
The State of Open Source GIS

Prepared By: Paul Ramsey, Director
Refractions Research Inc.
Suite 300 – 1207 Douglas Street
Victoria, BC, V8W-2E7
pramsey@refractions.net
Phone: (250) 383-3022
Fax: (250) 383-2140

Last Revised: May 25, 2006

- 2 -

TABLE OF CONTENTS

THE STATE OF OPEN SOURCE GIS ...1

TABLE OF CONTENTS..2

1 SUMMARY..3

1.1 OPEN SOURCE ...3
1.2 OPEN SOURCE GIS..5

2 IMPLEMENTATION LANGUAGES ...6

2.1 SURVEY OF ‘C’ PROJECTS ..7
2.1.1 Shared Libraries...8

2.1.1.1 GDAL/OGR ...8
2.1.1.2 Proj4..10
2.1.1.3 GEOS..11
2.1.1.4 Mapnik..13

2.1.2 Applications..13
2.1.2.1 OpenEV ..15
2.1.2.2 MapGuide Open Source...16
2.1.2.3 UMN Mapserver ..17
2.1.2.4 GRASS ...19
2.1.2.5 OSSIM..20
2.1.2.6 QGIS...21
2.1.2.7 TerraLib..22
2.1.2.8 GMT ...23
2.1.2.9 PostGIS...26

2.2 SURVEY OF ‘JAVA’ PROJECTS ..27
2.2.1 Shared Libraries...28

2.2.1.1 GeoAPI ...28
2.2.1.2 WKB4J ...28
2.2.1.3 JTS Topology Suite..29
2.2.1.4 GeoTools ..30

2.2.2 Applications..30
2.2.2.1 GeoServer ...30
2.2.2.2 deegree..32
2.2.2.3 JUMP..33
2.2.2.4 gvSIG..35
2.2.2.5 OpenMap ..36
2.2.2.6 uDig ..37

2.3 SURVEY OF ‘WEB’ PROJECTS...39
2.3.1 Toolkits ...39

2.3.1.1 MapBuilder...39
2.3.1.2 ka-Map! ..41
2.3.1.3 Mapbender..42

- 3 -

1 SUMMARY

1.1 Open Source
“Open source” software is technically defined as software in which the source code is available for
modification and redistribution by the general public. There are a myriad of different open source
software licenses, and the “Open Source Initiative” (http://www.opensource.org/) has taken on the
role of general arbiter of license correctness.
It is easy to become overly distracted by licenses and source code when evaluating open source
software (OSS), or considering OSS as a corporate or project strategy. Fundamentally, successful
OSS projects are not created by releasing free source code – they are created through the growth of
communities of shared interest.
For example, Apache is not a successful open source project because the code is freely available.
There are numerous web server projects that have freely available and open source code. Apache
is the preeminent open source web server because it commands a powerful community that shares
an interest in maintaining Apache as a top-drawer web server. The Apache community includes
corporate giants like IBM and HP, government agencies, and academic contributors. It also has a
role for individual contributors. These diverse actors can work together collaboratively because the
Apache software and the Apache organization have been engineered together to maximize
transparency and openness:
• The software itself is designed in a modular manner. At a basic level, contributors can aid

the project by writing special purpose modules which add otherwise obscure functionality. For
example, mod_auth_pgsql allows Apache to do basic HTTP authentication by reading user
names and passwords from a PostgreSQL database. This is obscure functionality, usable by
maybe a few thousand users, but it adds an incremental value to the product, and the
modularity of the software makes it easy to add.

• The software is extremely well documented. A successful project must reduce the amount of
friction experienced by new contributors to a minimum, to maximize the amount of useful
effort directed at the project. Time spent figuring out undocumented software internals is time
not spent productively working on the code.

• The software core design and development process is transparent. All the mailing lists
used by the core team for discussions of design ideas and future directions are public. Anyone
can contribute to the discussion, although the core team will make the design decisions in the
end. The source code is available throughout the development process, via a CVS (concurrent
versioning system) archive, not just at release time.

- 4 -

• The core team itself is modular and transparent. The core development team is made up of
programmers who self-select. New members are added based on their contributions to the
source code. When a core member ceases contributing to the project, they are removed after a
set time period. There is a governance structure that openly allows access to the core team
based on programming merit, not corporate or government affiliation.

The strength of open source projects therefore should be evaluated not simply on technical merit or
on legal licensing wording. OSS products should be evaluated like COTS (“commercial off-the-
shelf”) products, comparing both the technical features and the vitality of the community that
maintains and improves the project.
Evaluations of OSS projects should ask:
• Is the project well documented? Does the web presence provide direct access to both the

source code and documentation about the internals of the code? Is there tutorial level
documentation for all three user categories (user, administrator, programmer) to get people up
and working with the software quickly?

• Is the development team transparent? Is it clear who the core development team is? Is the
development team mailing list public? Is the current development version of the code available
online? Is membership in the team attainable via a merit-based process?

• Is the software modular? (This criterion is more applicable to some projects than others,
depending on design constraints.) Is there a clear method to add functionality to the project
that does not involve re-working the internals? Is this method documented clearly with
examples? Is there a library of already-contributed enhancements maintained by the wider user
/ developer community?

• How wide is the development community? Are multiple organizations represented in the
core development team? Are core team members financially supported in their work by
sponsoring organizations? Is the development community national or international? How
large is the user mailing list? How large is the developer mailing list?

• How wide is the user community? (This criterion is basically a standard COTS criterion –
more installations imply wider acceptance and testing.) What organizations have deployed the
software? What experiences have they had?

The more of these questions which are answered in the positive, the healthier the OSS project
under examination is.

- 5 -

1.2 Open Source GIS
The Open Source GIS space includes products to fill every level of the OpenGIS spatial data
infrastructure stack. Existing products are now entering a phase of rapid refinement and
enhancement, using the core software structures that are already in place. Open Source software
can provide a feature-complete alternative to proprietary software in most system designs.

Rasters and Images:
TIFF, ERDAS, JPG,

GIF, PNG

GIS Vector Files:
ESRI Shape, MapInfo,

SDTS, IGDS, GML

PostGIS / PostgreSQL
Spatial Database

OGR Vector Library GDAL Raster Library

University of Minnesota Mapserver

OpenGIS Web Map Server (WMS)

OpenGIS Web
Feature Server (WFS)

The
Internet

Web
Browser

JUMP

Local Area
Network

Thuban

OpenGIS SQL Database

H
T
T
P

/
C

G
I

H
T
T
P

 /
 X

M
L

P
g

N
e
t
 /

 S
Q

L

JD
B

C
 /

 S
Q

L

H
T
T
P

 /
 X

M
L

Cascading
WMS

Server

JUMP

H
T
T
P

 /
 X

M
L

GeoServer

OpenEV

GeoTools

GRASS

- 6 -

2 IMPLEMENTATION LANGUAGES

Open Source GIS software can be categorized into two largely independent development tribes.
Within each tribe, developers cross-pollinate very heavily, contribute to multiple projects, and have
high awareness of ongoing developments. The two tribes can be loosely described as:
• The ‘C’ tribe, consisting of developers working on UMN Mapserver, GRASS, GDAL/OGR,

OSSIM, Proj4, GEOS, PostGIS, QGIS, MapGuide OS and OpenEV. The ‘C’ tribe also
includes users of scripting languages that bind easily to C libraries, such as Python, Perl and
PHP.

• The ‘Java’ tribe, consisting of developers working on GeoTools, uDig, GeoServer, JTS,
JUMP, and DeeGree.

The PostGIS/PostgreSQL project – by virtue of standard database interfaces like libpq (C/C++),
ODBC and JDBC (Java) – is used by both tribes more or less equally. However, because it is
written in C, PostGIS is a natural member of the C tribe and uses many of the C-based GIS support
libraries. Mapserver is used by some Java developments via JNI (Java Native Interface) bindings,
or via the OpenGIS WMS and WFS protocols.
Both the C and Java development areas have a high degree of internal project linkage, with a great
deal of leverage being applied through code reuse and linking libraries.
Finally, there is a “third category” of projects that do not fall into language bins: web applications.
This category includes various toolkits and web services that provide a browser-based interface to
spatial web services, like mapping servers.

- 7 -

2.1 Survey of ‘C’ Projects
The ‘C’ projects are, in general, more mature than the Java projects, having been in development
for a longer period of time, and having had more time to attract active development communities.
The core of the ‘C’ projects are the shared libraries (shown in grey below), which are re-used
across the application space and form the base infrastructure for common capabilities, such as
format support and coordinate re-projection.

OGR/GDAL

Mapserver

GRASS

PostGIS

OpenEV

OSSIM

Proj4

GEOS

QGIS

MapGuide OS
GMT

TerraLib

Mapnik

- 8 -

2.1.1 Shared Libraries

The shared libraries provide common capabilities across the various C-based applications, allowing
applications to easily add features that would ordinarily involve a great deal of implementation.

2.1.1.1 GDAL/OGR
The GDAL/OGR libraries are really two logically separate pieces of code: GDAL provides an
abstraction library for raster data and modules for reading and writing various raster formats; OGR
provides an abstraction library for vector data and modules for reading and writing vector formats.
However, the two libraries are maintained within the same build system for historical reasons and
because both libraries are maintained by the same person.
Maintainer: Frank Warmerdam (warmerdam@pobox.com)
Web Site: http://remotesensing.org/gdal/
Implementation Language: C++
Source License: MIT
Because the source license for GDAL/ORG is BSD, the library is also used in several proprietary
GIS packages, and the maintainer derives some income through maintaining the capabilities of the
package for these proprietary users.
GDAL supports the following raster formats and many others:

Long Format Name Code Creation Georeferencing Maximum File
Size

Arc/Info ASCII Grid AAIGrid Yes Yes No limits
Arc/Info Binary Grid (.adf) AIG No Yes --
Microsoft Windows Device
Independent Bitmap (.bmp)

BMP Yes Yes 4GiB

BSB Nautical Chart Format (.kap) BSB No Yes --
CEOS (Spot for instance) CEOS No No --
DODS / OPeNDAP DODS No Yes --
Military Elevation Data (.dt0, .dt1) DTED No Yes --
ERMapper Compressed Wavelets
(.ecw)

ECW Yes Yes

ESRI .hdr Labelled EHdr No Yes --
ENVI .hdr Labelled Raster ENVI Yes Yes No limits
Envisat Image Product (.n1) Envisat No No --
EOSAT FAST Format FAST No Yes --
FITS (.fits) FITS Yes No
Graphics Interchange Format (.gif) GIF Yes No

- 9 -

Long Format Name Code Creation Georeferencing Maximum File
Size

GRASS Rasters GRASS No Yes --
TIFF / GeoTIFF (.tif) GTiff Yes Yes 4GiB
Hierarchical Data Format Release 5
(HDF5)

HDF4 Yes Yes 2GiB

Erdas Imagine (.img) HFA Yes Yes No limits
Atlantis MFF2e HKV Yes Yes No limits
Japanese DEM (.mem) JDEM No Yes --
JPEG JFIF (.jpg) JPEG Yes Yes 4GiB (max

dimentions
65500x65500)

JPEG2000 (.jp2, .j2k) JPEG2000 Yes Yes
NOAA Polar Orbiter Level 1b Data
Set (AVHRR)

L1B No Yes --

Erdas 7.x .LAN and .GIS LAN No Yes 2GB
Atlantis MFF MFF Yes Yes No limits
Multi-resolution Seamless Image
Database

MrSID No Yes --

NITF NITF Yes Yes
NetCDF NetCDF No Yes 2GB
OGDI Bridge OGDI No Yes --
PCI .aux Labelled PAux Yes No No limits
Portable Network Graphics (.png) PNG Yes No
Netpbm (.ppm,.pgm) PNM Yes No No limits
USGS SDTS DEM (*CATD.DDF) SDTS No Yes --
SAR CEOS SAR_CEOS No Yes --
USGS ASCII DEM (.dem) USGSDEM No Yes --
X11 Pixmap (.xpm) XPM Yes No

- 10 -

OGR supports the following vector formats:

Format Name Creation Georeferencing
Arc/Info Binary Coverage No Yes
CSV (Common Separated) Yes No
DODS / OPeNDAP No Yes
DWG/DXF Yes No
ESRI Shapefile Yes Yes
ESRI ArcSDE No Yes
ESRI Geodatabase No Yes
GML Yes No
GRASS No Yes
Mapinfo File Yes Yes
Microstation DGN No No
MySQL Yes Yes
ODBC No Yes
Oracle Spatial Yes Yes
PostgreSQL Yes Yes
SQLLite Yes No
SDTS No Yes
UK .NTF No Yes
U.S. Census TIGER/Line No Yes

2.1.1.2 Proj4

Proj4 is a coordinate re-projection library, capable of executing transformations between
cartographic projection systems, and also between different spheroids and datums (where datum
grid shifts are available).
The Proj4 library was originally written by Gerald Evenden as a utility library for the US
Geological Survey (USGS). The current maintainer is Frank Warmerdam, who began maintaining
Proj4 after Evenden ceased actively working on the project. Evenden remains active on the
mailing list, and is currently providing new mathematical projections, though not providing code
maintenance.
Maintainer: Frank Warmerdam (warmerdam@pobox.com)
Web Site: http://remotesensing.org/proj/
Implementation Language: C
Source License: MIT-style

- 11 -

Projections supported by the Proj4 library (projection code and common name):
aea : Albers Equal Area
aeqd : Azimuthal Equidistant
airy : Airy
aitoff : Aitoff
alsk : Mod. Stererographics of Alaska
apian : Apian Globular I
august : August Epicycloidal
bacon : Bacon Globular
bipc : Bipolar conic of western hemisphere
boggs : Boggs Eumorphic
bonne : Bonne (Werner lat_1=90)
cass : Cassini
cc : Central Cylindrical
cea : Equal Area Cylindrical
chamb : Chamberlin Trimetric
collg : Collignon
crast : Craster Parabolic (Putnins P4)
denoy : Denoyer Semi-Elliptical
eck1 : Eckert I
eck2 : Eckert II
eck3 : Eckert III
eck4 : Eckert IV
eck5 : Eckert V
eck6 : Eckert VI
eqc : Equidistant Cylindrical (Plate Caree)
eqdc : Equidistant Conic
euler : Euler
fahey : Fahey
fouc : Foucaut
fouc_s : Foucaut Sinusoidal
gall : Gall (Gall Stereographic)
gins8 : Ginsburg VIII (TsNIIGAiK)
gn_sinu : General Sinusoidal Series
gnom : Gnomonic
goode : Goode Homolosine
gs48 : Mod. Stererographics of 48 U.S.
gs50 : Mod. Stererographics of 50 U.S.
hammer : Hammer & Eckert-Greifendorff
hatano : Hatano Asymmetrical Equal Area
imw_p : International Map of the World Polyconic
kav5 : Kavraisky V
kav7 : Kavraisky VII
labrd : Laborde
laea : Lambert Azimuthal Equal Area
lagrng : Lagrange
larr : Larrivee
lask : Laskowski
latlong : Lat/long (Geodetic)
longlat : Lat/long (Geodetic)
lcc : Lambert Conformal Conic
leac : Lambert Equal Area Conic
lee_os : Lee Oblated Stereographic
loxim : Loximuthal
lsat : Space oblique for LANDSAT
mbt_s : McBryde-Thomas Flat-Polar Sine (No. 1)
mbtfpp : McBride-Thomas Flat-Polar Parabolic
mbtfpq : McBryde-Thomas Flat-Polar Quartic
mbtfps : McBryde-Thomas Flat-Polar Sinusoidal
merc : Mercator
mil_os : Miller Oblated Stereographic

mill : Miller Cylindrical
mpoly : Modified Polyconic
moll : Mollweide
murd1 : Murdoch I
murd2 : Murdoch II
murd3 : Murdoch III
nell : Nell
nell_h : Nell-Hammer
nicol : Nicolosi Globular
nsper : Near-sided perspective
nzmg : New Zealand Map Grid
ob_tran : General Oblique Transformation
ocea : Oblique Cylindrical Equal Area
oea : Oblated Equal Area
omerc : Oblique Mercator
ortel : Ortelius Oval
ortho : Orthographic
pconic : Perspective Conic
poly : Polyconic (American)
putp1 : Putnins P1
putp2 : Putnins P2
putp3 : Putnins P3
putp3p : Putnins P3'
putp4p : Putnins P4'
putp5 : Putnins P5
putp5p : Putnins P5'
putp6 : Putnins P6
putp6p : Putnins P6'
qua_aut : Quartic Authalic
robin : Robinson
rpoly : Rectangular Polyconic
sinu : Sinusoidal (Sanson-Flamsteed)
somerc : Swiss. Obl. Mercator
stere : Stereographic
tcc : Transverse Central Cylindrical
tcea : Transverse Cylindrical Equal Area
tissot : Tissot
tmerc : Transverse Mercator
tpeqd : Two Point Equidistant
tpers : Tilted perspective
ups : Universal Polar Stereographic
urm5 : Urmaev V
urmfps : Urmaev Flat-Polar Sinusoidal
utm : Universal Transverse Mercator (UTM)
vandg : van der Grinten (I)
vandg2 : van der Grinten II
vandg3 : van der Grinten III
vandg4 : van der Grinten IV
vitk1 : Vitkovsky I
wag1 : Wagner I (Kavraisky VI)
wag2 : Wagner II
wag3 : Wagner III
wag4 : Wagner IV
wag5 : Wagner V
wag6 : Wagner VI
wag7 : Wagner VII
weren : Werenskiold I
wink1 : Winkel I
wink2 : Winkel II
wintri : Winkel Tripel

2.1.1.3 GEOS
GEOS is the “Geometry Engine, Open Source”, a C++ implementation of the JTS topology library.
GEOS provides C++ implementations of all the simple features objects found in the OpenGIS
“Simple Features for SQL” specification, and implementations of all the methods defined for those
objects.
Topological calculations are easy to visualize, but hard to implement in generality. The GEOS/JTS
algorithms are robust for all the spatial predicates (geometric comparisons which return true/false
values). The GEOS/JTS algorithms are also strong in the spatial operators (geometric functions
which produce geometric results).

- 12 -

Some Important GEOS Methods
Predicates Operators
Relate(Geom)
Touches(Geom)
Disjoint(Geom)
Intersects(Geom)
Contains(Geom)
Crosses(Geom)
Within(Geom)
Overlaps(Geom)
IsValid()

Intersection(Geom)
Union(Geom)
Difference(Geom)
Buffer()
Distance(Geom)
Length()
Area()

Maintainer: Refractions Research (info@refractions.net)
Web Site: http://geos.refractions.net/
Implementation Language: C++
Source License: LGPL

- 13 -

2.1.1.4 Mapnik
Mapnik is a recent project, with a very small development team and user base at this point, but it
holds some substantial promise. Mapnik appears to have a genesis in a developer reviewing the
architecture of Mapserver and deciding to “do it right”. The result is a C++ library built with a
different set of dependencies (AGG for rendering instead of GD, C++ and associated Boost
libraries instead of C) and an architecture thought out to be more extendible over the long term.
Thus far, Mapnik is still a work in progress, but already is producing some very fine cartographic
output, and has some preliminary OpenGIS service implementations built on top of it.

Maintainer: Artem Pavlenko
Web Site: http://www.mapnik.org
Implementation Language: C++
Source License: LGPL

2.1.2 Applications

The C family of applications is a mixture of server-side applications and client-side applications,
analytical tools and display tools. Most GIS workloads are covered in the application family, with
the notable exception of paper map-making, the most common GIS workload.

- 14 -

Note: The saturated commercial market for cartography tools, the high level of effort to achieve usable tools, and the
appeal of other cutting edge projects have combined to deter any active development on user-friendly paper map
production tools. As with the OpenOffice experience in Linux, it would probably require a dedicated multi-year funded
project to produce a core product with sufficient technical mass that an open source community could reasonably
continue with enhancements and support.

- 15 -

2.1.2.1 OpenEV
OpenEV is a GIS viewer application, originally designed for a Linux environment but recently
ported to work under Windows as well. OpenEV’s most interesting design feature is a reliance on
OpenGL as a screen rendering language. The reliance on OpenGL means OpenEV can provide
very good render performance, but it also restricts the platforms on which OpenEV can be run.
OpenEV can quickly view very large image files, and create 3D views of the images in
combination with digital elevation files.
OpenEV screen shot:

Maintainer: Atlantis Scientific (http://www.atlantis-scientific.com)
Web Site: http://openev.sourceforge.net/
Implementation Language: C / Python
Source License: LGPL

- 16 -

2.1.2.2 MapGuide Open Source
Despite sharing a name with the previous closed source MapGuide product from Autodesk,
MapGuide Open Source (OS) is in fact a completely new product, with a new code base and a new
licensing philosophy. Autodesk will sell the new MapGuide as commercial product, with some
bonus features (extra format support, formal product support, better backward compatibility) but
the main development of the MapGuide OS product is now done as open source. (The situation is
similar to the arrangement Netscape/AOL had with the Mozilla web browser some years ago –
bundling a separate closed source version based on an open source core.)
From their web site:
“MapGuide Open Source is a web-based platform that enables users to quickly develop and deploy
web mapping applications and geospatial web services. MapGuide features an interactive viewer
that includes support for feature selection, property inspection, map tips, and operations such as
buffer, select within, and measure. MapGuide includes an XML database for managing content,
and supports most popular geospatial file formats, databases, and standards. MapGuide can be
deployed on Linux or Windows, supports Apache and IIS web servers, and offers extensive PHP,
.NET, Java, and JavaScript APIs for application development. MapGuide Open Source is licensed
under the LGPL.”
As a more recent project, MapGuide has a more modern architecture than the original MapServer.
It also includes some default web interface components as well, so it is possible to create an out-of-
the-box web mapping site with MapGuide more easily than with Mapserver. Mapserver has its
own advantages, in terms of simplicity and number of supported formats, so examining both
carefully before making a decision is a good idea.
Because the originating organization is Autodesk, some users might be concerned that MapGuide
OS is not “real” open source. However, it certainly is “real”, judging from a number of facts.
First, the license used is not some customized corporate license, but the familiar LGPL, used by
many other open source projects. Second, like other open source projects, the new MapGuide OS
code base includes dependencies on other open source library projects, such as Proj4 and GEOS –
enlightened re-use is a sign of a good open source methodology. Finally, Autodesk has opened up
the development process, using a public source code repository for active development, having a
public mailing list for users and developers to directly interact, and transferring all intellectual
property rights for the code to a neutral organization (the Open Source Geospatial Foundation).

- 17 -

Maintainer: Autodesk
Web Site: http://mapguide.osgeo.org/
Implementation Language: C++ /
Source License: MIT-style

2.1.2.3 UMN Mapserver

The University of Minnesota MapServer (commonly called just “MapServer”) is an internet map
server, a server-side piece of software which renders GIS data sources into cartographic map
products on-the-fly.
On OSS evaluation merits, MapServer is easily the most successful open source GIS project to
date.
MapServer has a multi-disciplinary community, has core team members with 100% of their time
devoted to product maintenance and enhancement, has an open core team, substantial
documentation, and a transparent release process. The modularity of the project has been improved
with each release, and now supports both multiple input format types and multiple output render
types.
On technical merits, MapServer is also extremely successful. It supports more input data sources
than most proprietary products, has higher performance, and (in the precompiled versions) is
simpler to install and set up.

- 18 -

Input Formats Output Formats API Access
Shape GIF MapServer CGI
PostgreSQL JPEG MapScript Python
OracleSpatial PNG MapScript Perl
ArcSDE All GDAL Formats MapScript PHP
Remote WMS Layers MapScript Java
JPG/WRL C API
GIF/WRL OpenGIS WMS
PNG/WRL OpenGIS WFS
All GDAL Formats
All OGR Formats

Maintainer: MapServer Core Team (mapserver-dev@lists.gis.umn.edu)
Web Site: http://mapserver.gis.umn.edu
Implementation Language: C
Source License: MIT-style

- 19 -

2.1.2.4 GRASS
GRASS is easily the oldest of the open source GIS software products. It was originally a closed
project of the US Army, started in 1982 to provide capabilities that did not exist in the commercial
GIS sector. The Army maintained GRASS under active development until 1992, and continued
with fixes and patches through 1995. GRASS was picked up by the academic community in 1997,
when Baylor University began coordinating development, and was officially “open sourced” in
1999 under the GPL. Since 2001, the GRASS project has been headquartered at ITC, in Trento,
Italy.
Originally written as a raster analysis system, GRASS has had vector analysis capabilities added to
it as well. GRASS can import a wide range of formats, using both the GDAL and OGR libraries
for data import. GRASS also has the ability to directly read attribute and spatial data from
PostGIS/PostgreSQL.

GRASS has been most historically effective as a modeling tool, carrying out complex data analysis
tasks. The list of applications at the GRASS home page (http://grass.itc.it/applications/index.php)
gives a flavor of the kinds of problems GRASS is being used to solve.
Maintainer: GRASS Development Team
Web Site: http://grass.itc.it/
Implementation Language: C
Source License: GPL

- 20 -

2.1.2.5 OSSIM
OSSIM (Open Source Software Image Map) is a raster manipulation tool chain. OSSIM is
primarily developed by Intelligence Data Systems and used by that company for many cutting-edge
image processing projects in the US government. Sanz also uses OSSIM in their EarthWhere
product line of high end raster storage and manipulation appliances.
OSSIM is a C++ library, with a number of applications built on top. The primary technical benefit
of OSSIM is that it is architected to cut image processing tasks into independent and parallelizable
components. As a result, OSSIM-based processing tasks can be run on high performance
computing arrays, such as Beowulf clusters, for massive performance increases.
OSSIM processing streams are built up as “task chains”, tying together different processing
modules to turn raw imagery into completed product.

Maintainer: Intelligence Data Systems
Web Site: http://www.ossim.org
Implementation Language: C++
Source License: GPL

- 21 -

2.1.2.6 QGIS
QGIS is a GIS viewing environment built primarily for the Linux desktop. QGIS depends on the
QT widget set, which is a same widget set used by the popular KDE desktop environment.
However, QT is available for other platforms (Win32, OS/X, Solaris) so a QGIS desktop can be
built for use in a multi-platform environment.
QGIS supports PostGIS and Shapefiles as vector data sources. QGIS uses OGR as a data import
bridge, so support of all OGR formats is also available. QGIS supports DEM, ArcGrid, ERDAS,
SDTS, and GeoTIFF raster formats.

QGIS has increased in development tempo in 2004, completing several minor releases and adding
important new features with each release. The developer community is increasing beyond the
original founder.

Maintainer: Gary Sherman (gsherman@sourceforge.net)
Web Site: http://www.qgis.org/
Implementation Language: C++
Source License: GPL

- 22 -

2.1.2.7 TerraLib
TerraLib is a GIS classes and functions library written in C++, developed by a branch of the
Brazilian space agency (INPE) for use throughout the Brazilian government. TerraLib is the
second generation of development, based on the original “Spring GIS” project. Its main aim is to
enable the development of a new generation of GIS applications, based on the technological
advances on spatial databases.
TerraLib implements the following data and service modules:

• Metadata Model
• Spatial Model
• Spatial Model to Oracle Spatial
• Application Model
• GeoCoding Model
• Spatial Statistic Model

The documentation and other information about TerraLib is generally in Portuguese with a
moderate amount of English. It can be difficult to understand at times for non-speakers.
Maintainer: INPE (Brazil)
Web Site: http://www.terralib.org/
Implementation Language: C++
Source License: LGPL

- 23 -

2.1.2.8 GMT
The “Generic Mapping Tools” (GMT) is a project with a very long history. Developed in an
academic environment in the University of Hawaii since 1988, GMT is designed as a suite of small
data manipulation and graphic generation programs, that can be sequenced and scripted together to
create complex data processing chains. For example, GMT applications can take raw data in from
sensors, create an interpolated grid, contour the grid, and create plotter-ready files for printing in
automated batch streams.

FILTERING OF 1-D AND 2-D DATA:
blockmean L2 (x,y,z) data filter/decimator
blockmedian L1 (x,y,z) data filter/decimator
blockmode Mode-estimating (x,y,z) data filter/decimator
filter1d Filter 1-D data (time series)
grdfilter Filter 2-D data in space domain

PLOTTING OF 1-D and 2-D DATA:
grdcontour Contouring of 2-D gridded data
grdimage Produce images from 2-D gridded datar
grdvector Plot vector fields from 2-D gridded data
grdview 3-D perspective imaging of 2-D gridded data
psbasemap Create a basemap frame
psclip Use polygon files as clipping paths
pscoast Plot coastlines, filled continents, rivers, and political borders
pscontour Direct contouring or imaging of xyz-data by triangulation
pshistogram Plot a histogram
psimage Plot Sun rasterfiles on a map
psmask Create overlay to mask specified regions of a map
psrose Plot sector or rose diagrams
psscale Plot grayscale or colorscale
pstext Plot textstrings
pswiggle Draw anomalies along track
psxy Plot symbols, polygons, and lines in 2-D
psxyz Plot symbols, polygons, and lines in 3-D

GRIDDING OF (X,Y,Z) DATA:
nearneighbor Nearest-neighbor gridding scheme
surface Continuous curvature gridding algorithm
triangulate Perform optimal Delauney triangulation on xyz data

- 24 -

SAMPLING OF 1-D AND 2-D DATA:
grdsample Resample a 2-D gridded data onto new grid
grdtrack Sampling of 2-D data along 1-D track
sample1d Resampling of 1-D data

PROJECTION AND MAP-TRANSFORMATION:
grdproject Project gridded data onto new coordinate system
mapproject Transformation of coordinate systems
project Project data onto lines/great circles

INFORMATION:
gmtdefaults List the current default settings
gmtset Edit parameters in the .gmtdefaults file
grdinfo Get information about grd files
minmax Report extreme values in table datafiles

CONVERT OR EXTRACT SUBSETS OF DATA:
gmtconvert Convert table data from one format to another
gmtmath Reverse Polish calculator for table data
gmtselect Select table subsets based on multiple spatial criteria
grd2xyz Convert 2-D gridded data to table
grdcut Cut a sub-region from a grd file
grdpaste Paste together grdfiles along common edge
grdreformat Convert from one grdformat to another
splitxyz Split xyz files into several segments
xyz2grd Convert table to 2-D grd file

MISCELLANEOUS:
makecpt Create GMT color palette tables
spectrum1d Compute spectral estimates from time-series
triangulate Perform optimal Delauney triangulation on xyz data

- 25 -

DETERMINE TRENDS IN 1-D AND 2-D DATA:
fitcircle Finds best-fitting great or small circles
grdtrend Fits polynomial trends to grdfiles (z = f(x,y))
trend1d Fits polynomial or Fourier trends to y = f(x) series
trend2d Fits polynomial trends to z = f(x,y) series

OTHER OPERATIONS ON 2-D GRIDS:
grd2cpt Make color palette table from grdfile
grdclip Limit the z-range in gridded data sets
grdedit Modify grd header information
grdfft Operate on grdfiles in frequency domain
grdgradient Compute directional gradient from grdfiles
grdhisteq Histogram equalization for grdfiles
grdlandmask Creates mask grdfile from coastline database
grdmask Set nodes outside a clip path to a constant
grdmath Reverse Polish calculator for grdfiles
grdvolume Calculating volume under a surface within a contour

Maintainer: Paul Wessel & Walter Smith
Web Site: http://gmt.soest.hawaii.edu/
Implementation Language: C
Source License: GPL

- 26 -

2.1.2.9 PostGIS
PostGIS adds spatial database capabilities to the PostgreSQL (www.postgresql.org) object-
relational database. The PostGIS extension adds:
• Proper spatial objects (point, line, polygon, multipoint, multiline, multipolygon,

geometrycollection)
• Spatial indexing (r-tree)
• Simple analytical functions (area, length, distance)
• Predicates (via GEOS)
• Operators (via GEOS)
• Coordinate system metadata
• Coordinate reprojection support (via Proj4)
• Data import and export tools
The strength of PostGIS is that it has become the standard spatial database backend for all the other
open source GIS tools. As a result, a layer in PostGIS can be analyzed with GRASS, published
over the web with Mapserver, visualized on the desktop with OpenEV, and exported to proprietary
formats with OGR.

PostGIS
PostgreSQL

Spatial
Database

Mapserver

OGR

QGIS

GeoTools

JUMP

WKB4J

FME

FME

MS Access

Visual Basic

GRASS

JDBC

ODBC

LibPQ

PostGIS is also used heavily by applications and libraries in the Java development language, via
the standard JDBC (Java Database Connectivity) libraries.
Maintainer: Refractions Research Inc
Web Site: http://postgis.refractions.net
Implementation Language: C
Source License: GPL

- 27 -

2.2 Survey of ‘Java’ Projects
The “Java” world initially included several independent attempts at “complete unified toolkits” –
OpenMap, GeoTools, and deegree. OpenMap continues to be independently developed, but the
deegree and GeoTools projects have decided to work together at project convergence. In addition,
the new uDig desktop platform uses the same underlying libraries and resources the GeoServer and
GeoTools projects do.
As a result, development in the Java world is currently concentrated around projects that use the
JTS Topology Suite as the basis for geometry representation, with a secondary node growing
around the GeoTools library.

GeoTools

OpenMap

GeoServer

JTS
Topology
Suite

WKB4J

JUMP

uDig

DeeGree

gvSIG
GeoAPI

Side projects, such as GeoAPI (interface standards) and WKB4J (well-known binary processing)
are also used either directly by the projects or by applications that use the toolkit chain.

- 28 -

2.2.1 Shared Libraries

2.2.1.1 GeoAPI
GeoAPI is a set of Java interface libraries that provide standard ways to perform various aspects of
geoprocessing. Data management, coordinate reprojections, abstract operations, metadata
cataloguing, etc. GeoAPI patterns its development against existing ISO and OpenGIS
specifications. Portions of GeoAPI have been approved as OpenGIS standards (in an abstract
UML form) as part of the GO-1 standards process. GeoAPI hopes to bring together all the Java
projects under a single interface specification, regardless of implementation details.

Maintainer: Martin Desruisseaux
Web Site: http://geoapi.sourceforge.net/
Implementation Language: Java
Source License: BSD

2.2.1.2 WKB4J
WKB4J is a WKB interpretation library developed to proved a high-speed interconnect between
Java and WKB-enabled spatial data sources (usually RDBMS). WKB4J provides a “Factory”
interface to a WKB data source and can produce a number of different geographic primitive objects
– JTS geometries, PostGIS Java geometries, OpenMap geometries.
Maintainer: David Garnier (david.garnier@etudier-online.com)
Web Site: http://wkb4j.sourceforge.net/
Implementation Language: Java
Source License: GPL

- 29 -

2.2.1.3 JTS Topology Suite
JTS is the central geometry library for much of the ongoing Java GIS development. JTS provides
a Java implementation of the OpenGIS “Simple Features Specification”, in particular the functions
described in the “Simple Features for SQL Specification”.
The element that makes JTS special is the implementation of the “spatial predicates”. Spatial
predicates are functions which compare two spatial objects and return a boolean true/false result
indicating the existence (or absence) of a particular spatial relationship. Some examples of spatial
predicates are Contains(), Intersects(), Touches(), and Crosses(). The JTS implementation of the
predicates is special in that the functions are all “robust” – that is, there is no special case of strange
geometries or odd coordinates which is capable of producing a failure or incorrect result. This is a
unique property – most proprietary products do not include robust spatial predicates.
JTS also includes implementations of the spatial “operators” which take two geometries and return
a new derived geometric result. Examples of the operators include Difference(), Union(), and
Buffer(). The JTS operator implementations have been widely tested, but do not have robustness
guarantees like the predicates. Each successive release of JTS improves operator robustness and
removes more failure cases.
Spatial predicate and operator implementations are valuable because they are extremely difficult to
code. For this reason, the JTS library is widely reused by other OSS projects. By using JTS, they
get a standard set of geometries, with the most difficult spatial methods already implemented.
GEOS, a port of JTS to C++, serves this same role for the C family of applications.
Maintainer: Martin Davis (mbdavis@vividsolutions.com)
Web Site: http://www.jump-project.org/
Implementation Language: Java
Source License: LGPL
JTS development was originally funded by GeoConnections.

- 30 -

2.2.1.4 GeoTools
GeoTools is an open source, Java GIS toolkit for developing OpenGIS compliant solutions. It has a
modular architecture that allows extra functionality to be added or removed easily. GeoTools aims
to support OpenGIS and other relevant standards as they are developed.
The aim of the project is to develop a core set of Java objects in a framework which makes it easy
for others to implement OGC compliant server-side services or provide OGC compatibility in
standalone applications or applets. The GeoTools project comprises a core API of interfaces and
default implementations of those interfaces.
It is not the intention of the GeoTools project to develop finished products or applications, but it is
the intention to interact and fully support other initiatives and projects which would like to use the
GeoTools 2 toolkit to create such resources.
GeoTools features and goals:
GeoTools code is built using the latest Java tools and environments (Java 1.4.1 at time of writing)
and will continue to leverage the capabilities of future Java environments and official extensions as
and when the technologies are released and have been through the first maintenance cycle (i.e.
version 1.x.1)
GeoTools is being built in as modular a form as possible in a way that allows interested parties to
use the functionality that they are interested in without needing to know about or include the
functionality that they are not interested in.
Modules are built which support individual OGC specifications (e.g. Filter, SLD, GML2) and
which also support interaction with a wide range of datasources (e.g Shapefile, MIF/MID, ArcSDE,
Oracle, PostGIS and MySQL). Modules each have their own maintainers who control the content
and direction of that module. The GeoTools project actively encourages suggestions for new
modules and invites interested developers to start new modules for new functionality or to help
drive and develop existing modules.
The overall maintenance and future direction of GeoTools are managed by the GeoTools Project
Management Committee. Currently this comprises 7 active developers who take joint
responsibility for design and implementation decisions. The team welcomes and encourages others
to become contributors and ultimately become part of the GeoTools development team.
It is a long-term goal of the GeoTools project to refine its core API and promote its use so that it
can become a recognized and standard API for GeoSpatial development.
Maintainer: GeoTools Project Management Committee
Web Site: http://docs.codehaus.org/display/GEOTOOLS/Home
Implementation Language: Java
Source License: LGPL

2.2.2 Applications

2.2.2.1 GeoServer
The GeoServer project is a Java (J2EE) implementation of the OpenGIS Consortium's Web
Feature Server specification. It is free software, available under the GPL 2.0 license.
GeoServer is built on top of the GeoTools library, and as a result, much of the internal logic of the
server (data sources, GML parsing, XML Filter support, etc) actually resides and is maintained at
the GeoTools library level. In this respect, it is best to consider the two projects as conjoined
entities – GeoServer/GeoTools.
The GeoServer WFS has been chosen by OpenGIS as a reference implementation for use in the
OpenGIS “CITE” interoperability portal. As a reference implementation, GeoServer will be
required to support all aspects of the current and evolving specification.

- 31 -

GeoServer can currently serve WFS on top of:
• Oracle Spatial
• ArcSDE
• PostGIS
• ESRI Shape Files

In addition to WFS support, GeoServer includes support for the Z39.50 catalog server which is part
of the OpenGIS catalog server specification.

GeoServer passes all OpenGIS conformance tests and is fully compliant with the Web Feature
Server 1.0 specification.

Maintainer: The Open Planning Project (http://www.openplans.org)
Web Site: http://geoserver.sourceforge.net
Implementation Language: Java
Source License: GPL

- 32 -

2.2.2.2 deegree
deegree (formerly known as “JaGo”) was developed initially in an academic environment at the
University of Bonn in Germany. The architecture is a message passing system, designed to be both
extremely modular and highly de-coupled. The deegree architecture allows various components of
the system to run on different machines while still presenting a unified system to the outside world.
Before leaving the academic world, deegree completed considerable OpenGIS feature support,
including both WMS and WFS server implementations. Supported data sources include shape file,
RDBMS and OpenGIS data formats (WKB and WKT). Catalog server support, grid coverage
server support and others are either fully are partially complete.
The architecture that makes deegree unique also makes understanding the code hard for the
neophyte – learning curves can be steep.
As part of the CITE project, the GeoTools and deegree teams are working to harmonize underlying
data models (feature and geometry models) and to bring some of the deegree capabilities (such as
WMS) into the GeoTools/GeoServer projects for use in CITE.
Maintainer: DeeGree Team (info@lat-lon.de)
Web Site: http://deegree.sourceforge.net/
Implementation Language: Java
Source License: LGPL

- 33 -

2.2.2.3 JUMP
JUMP is the “JUMP Unified Mapping Platform”, a visualization and user interface toolkit
originally written as a user interface wrapper for data integration algorithms.
JUMP was designed to be a generic and pluggable environment into which the complex algorithms
required for spatial data conflation could be embedded. Spatial data conflation usually requires a
human input element, and as a result JUMP was built with a number of generic user interface and
GIS viewer features.
• JUMP provides an interactive Workbench for viewing, editing, and processing spatial datasets
• JUMP provides an API giving full programmatic access to all functions, including I/O, feature-

based datasets, visualization, and all spatial operations
• JUMP is highly modular and extensible
• JUMP supports important industry standards such as GML and the OpenGIS Consortium

spatial object model
• JUMP is written in 100% pure JavaTM

JUMP supports GML, Shape, and RDBMS data sources.

- 34 -

JUMP has had an uneven development history, and has spawned a number of variant projects as a
result. The original JUMP continues to be maintained in a semi-closed and slow moving process
by the original development team – a new release is in the offing for 2006. The opacity of the core
development process led to a parallel process, dubbed “OpenJUMP” (www.openjump.org) that
quickly added multi-lingual support and numerous small interface improvements as well as some
analytical plug-ins. OpenJUMP itself recently spawned a commercially developed and supported
variant, Kosmo (http://www.saig.es/en/kosmo.php), in Spain.
Maintainer: Martin Davis (mbdavis@vividsolutions.com)
Web Site: http://www.jump-project.org/
Implementation Language: Java
Source License: GPL

- 35 -

2.2.2.4 gvSIG
gvSIG is a project of the Spanish province of Valencia. The goals of the project are to provide an
open source tool that utilizes open standards and is platform independent. gvSIG wraps a number
of the Java libraries, including GeoTools and JTS.
The design goals of gvSIG are: modularity, interoperability, open source, standards based, low cost
of deployment, and portability to multiple platforms.

Maintainer: Valencia, Spain
Web Site: http://www.gvsig.gva.es/
Implementation Language: Java
Source License: GPL

- 36 -

2.2.2.5 OpenMap
OpenMap is a component library for building spatial applications in Java. It was originally
developed by BBN technologies for consulting projects with utility and telephony companies. It
was the earliest open source Java spatial toolkit, and the code base is a little crusty at this point.
The old architecture largely remains, but several new concepts and ways of accessing data have
been overlain on top of it.
OpenMap is still being actively developed by BBN, who provides support contracts for companies
that want to use OpenMap as part of a product or other deployment.
OpenMap supports Shapefiles as an input data source, but other data sources are largely coded
from scratch. The “Layer” concept in OpenMap is sufficiently general that almost any data source
can be slaved into an OpenMap application – for example, OpenMap ships with an example
“EarthQuakes” layer which continuously updates against a public earthquake information HTML
page to provide an always-current map of recent earthquakes.

Maintainer: BBN Technologies (openmap@bbn.com)
Web Site: http://openmap.bbn.com/
Implementation Language: Java
Source License: Mozilla-style

- 37 -

2.2.2.6 uDig
uDig is a project to join the strengths of the GeoTools project (design, data structures, standards)
with the strengths of the JUMP project (UI, renderer, interactivity), and the strengths of the Eclipse
Rich Client Platform (extensibility, industry development standards) into a new desktop editor
capable of interacting with a range of local, network, and internet data sources.
uDig stands for “User-friendly Desktop Internet GIS”, and the goal is to bring internet mapping
technologies such as WMS and WFS transparently to ordinary GIS users desktops.
uDig has the following capabilities:

• WFS client read/write support, to allow direct editing of data exposed via transactional
Web Feature Servers (WFS-T).

• WMS support, to allow viewing of background data published via WMS.
• Styled Layer Descriptor (SLD) support, to allow the client-directed dynamic re-styling

of WMS layers.
• Web Catalog Server support, for quick location of available CGDI layers.
• Printing support, to allow users to create standard and large format cartography from

their desktops using CGDI data sources.
• Standard GIS file format support, to allow users to directly open, overlay, and edit local

Shape and GeoTIFF files with CGDI online data.
• Coordinate projection support, to transparently integrate remote layers in the client

application where necessary.
• Database access support, to allow users to directly open, overlay and edit data stored in

PostGIS, OracleSpatial, ArcSDE, and MySQL.
• Cross-platform support, using Java as an implementation language, and providing one-

click setup files for Windows, OS/X, and Linux.
• Multi-lingual design, allowing easy internationalization of the interface, with French and

English translations of the interface completed initially.
• Customizability and modularity, to allow third party developers to add new capabilities,

or strip out existing capabilities as necessary when integrating the application with existing
enterprise infrastructures.

The screen snap below shows uDig viewing WMS imagery, WFS data, and searching a remote
catalogue server for information.

- 38 -

Maintainer: Refractions Research (info@refractions.net)
Web Site: http://udig.refractions.net/
Implementation Language: Java
Source License: LGPL

- 39 -

2.3 Survey of ‘Web’ Projects
There are so many web projects, that it is not possible to discuss them all. Instead, we will focus
on a few of the larger and more widely maintained web projects, that have spread beyond their
initial development stage into a stage of wider community use and maintenance.
Because most web applications fall in the category of “custom software” for the application
deploying them, all the discussed software is “toolkit” software. All the toolkits discussed below
can be deployed in a “default” mode, but the urge to customize them in some way overpowers
almost every organization utilizing them.

2.3.1 Toolkits

2.3.1.1 MapBuilder

MapBuilder is focused on providing client tools for displaying and editing OpenGIS web services.
In particular, pure client side interfaces based on JavaScript. MapBuilder was originally conceived
to render Web Map Context documents as specified by the Open GIS Consortium (OGC) in web
pages, however the modular design allows MapBuilder to be extended to handle almost any XML
document type.
MapBuilder is used in the Canadian geo-portal, to provide key map information alongside
metadata. The metadata server returns an OpenGIS “Web Map Context” document, that
MapBuilder converts into a browsable map on the client side.

Maintainer: MapBuilder Team
Web Site: http://mapbuilder.sourceforge.net

- 40 -

Implementation Language: JavaScript / DHTML
Source License: GPL

- 41 -

2.3.1.2 ka-Map!
ka-Map ("ka" as in ka-boom!) is an open source project that is aimed at providing a JavaScript API
for developing highly interactive web-mapping interfaces using features available in modern web
browsers. In particular, it uses a tile-based map drawing system similar to that used in the popular
Google Maps web interface. The result is a particularly smooth and high performance web
interface experience.

The most salient feature of the application (the progressive tile loading) is not apparent in a screen
shot, but note other niceties such as the alpha-blended control windows and scale bar.
Maintainer: DM Solutions
Web Site: http://ka-map.maptools.org/
Implementation Language: JavaScript / DHTML / PHPMapscript
Source License: BSD

- 42 -

2.3.1.3 Mapbender
Mapbender is a project mainly carried out in Germany and used in the German spatial data
infrastructure for a number of web mapping sites.
The Mapbender Client Suite is a framework for managing spatial data services. It provides
interfaces for displaying, navigating and querying OGC WMS compliant map services. The
Mapbender framework contains interfaces for user and group administration, and accessing maps
rendered by OGC Web Map Services. The next revision of the software will include support for
WFS functionality and catalog services.

Because the primary development and user community is in Germany, a portion of the mailing list
traffic is in German, though most developers and users speak English as well.
Maintainer: CCGIS (info@ccgis.de)
Web Site: http://www.mapbender.org
Implementation Language: JavaScript / DHTML / PHP
Source License: GPL

