
Mastering PostGIS

PostGIS is open source extension of
PostgreSQL object-relational database
system that allows GIS objects to be
stored and allows querying for information
and location services. The aim of this
book is to help you master the
functionalities offered by PostGIS, from
data creation, analysis, and output, to ETL
and live edits.

The book begins with an overview of the
key concepts related to spatial database
systems. You will learn to load different
formats into your Postgres instance,
investigate the spatial nature of your
raster data, and fi nally export it using
built-in functionalities or third-party tools
for backup or representational purposes.

Through the course of this book, you
will be presented with many examples
of how to interact with the database
using JavaScript and Node.js. Sample
web-based applications interacting with
backend PostGIS will also be presented
throughout the book, so you can get
comfortable with the modern ways
of consuming and modifying your
spatial data.

Things you will learn:

• Refresh your knowledge of PostGIS

concepts and spatial databases

• Solve spatial problems with the use

of SQL in real-world scenarios

• Practical walkthroughs of application

development examples using PostGIS,

GeoServer and OpenLayers

• Extract, transform, and load your

spatial data

• Expose data directly or through

web services

• Consume your data in both desktop

and web clients

www.packtpub.com

$ 34.49 US
£ 28.37 UK

Prices do not include local sales
Tax or VAT where applicable

M
asterin

g
 P

o
stG

IS
D

o
m

in
ik M

ikiew
icz, M

ich
al M

ackiew
icz, To

m
asz N

ycz

Create, deliver, and consume spatial data using PostGIS

Mastering
PostGIS

Dominik Mikiewicz, Michal Mackiewicz,
Tomasz Nycz

Mastering PostGIS

Create, deliver, and consume spatial data using PostGIS

Dominik Mikiewicz
Michal Mackiewicz
Tomasz Nycz

BIRMINGHAM - MUMBAI

Mastering PostGIS

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2017

Production reference: 1260517

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78439-164-5

www.packtpub.com

http://www.packtpub.com

Credits

Authors
Dominik Mikiewicz
Michal Mackiewicz
Tomasz Nycz

Copy Editor
Safis Editing

Reviewers
Prashant Verma
Eric Pimpler

Project Coordinator
Nidhi Joshi

Commissioning Editor
Amey Varangaonkar

Proofreader
Safis Editing

Acquisition Editor
Vinay Argekar

Indexer
Mariammal Chettiyar

Content Development Editor
Mayur Pawanikar

Graphics
Tania Dutta

Technical Editor
Dinesh Chaudhary

Production Coordinator
Aparna Bhagat

  

About the Authors
Dominik Mikiewicz is a senior GIS consultant and the owner of one-person software shop
Cartomatic. When not coding, he spends time with wife and kids, trying to make the little
ones enjoy mountain trekking. He is also a long-distance cycling and running enthusiast.

Michal Mackiewicz has been working as a software engineer at GIS Support for five years.
His main job is to orchestrate various open source geospatial components and creating
application-specific GIS systems. PostgreSQL and PostGIS are among his favorite tools, and
are used in almost every project. Apart from developing, he also runs PostGIS training
courses. When not at work, he volunteers for OpenStreetMap and a local railway
preservation society.

Tomasz Nycz is a geographer and cartographer. He initiated the implementation of GIS in
the State Fire Service units in Poland. He works with recognized GIS companies in the
emergency management industry. In practice, he uses QGIS and PostGIS. He has been an
OpenStreetMap contributor for years. He also develops his scientific interests in the use of
new technologies in geomorphology and remote sensing. He is also an avid drone pilot and
mountain explorer.

About the Reviewers
Eric Pimpler is the founder and owner of GeoSpatial Training Services
(geospatialtraining.com) and has over 20 years of experience in implementing and
teaching GIS solutions using Esri, Google Earth/Maps, and open source technology.
Currently, he focuses on ArcGIS scripting with Python and the development of custom
ArcGIS Server web and mobile applications using JavaScript. He is the author of
Programming ArcGIS 10.1 with Python Cookbook.

Eric has a bachelor's degree in Geography from Texas A&M University and a master's
degree in Applied Geography with a concentration in GIS from Texas State University.

Prashant Verma started his IT carrier in 2011 as a Java developer at Ericsson working in
the telecoms domain. After a couple of years of Java EE experience, he moved into the big
data domain, and has worked on almost all the popular big data technologies, such as
Hadoop,
Spark, Flume, Mongo, and Cassandra. He has also played with Scala. Currently, he works
with QA Infotech as lead data engineer, working on solving e-Learning problems using
analytics and machine learning.
Prashant has also worked on Apache Spark for Java Developers as a technical reviewer.

I want to thank Packt Publishing for giving me the chance to review the book, as well as
my employer and my family for their patience while I was busy working on this book.

http://geospatialtraining.com/

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1784391646.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1784391646
https://www.amazon.com/dp/1784391646

Table of Contents
Preface 1

Chapter 1: Importing Spatial Data 6

Obtaining test data 7
Setting up the database 7

Importing flat data 8
Importing data using psql 8

Importing data interactively 9
Importing data non-interactively 12

Importing data using pgAdmin 13
Extracting spatial information from flat data 16

Importing shape files using shp2pgsql 17
shp2pgsql in cmd 18
The shp2pgsql GUI version 20

Importing vector data using ogr2ogr 21
Importing GML 23
Importing MIF and TAB 24
Importing KML 26
ogr2ogr GUI (Windows only) 28

Importing data using GIS clients 30
Exporting a shapefile to PostGIS using QGIS and SPIT 30
Exporting shapefile to PostGIS using QGIS and DbManager 31
Exporting spatial data to PostGIS from Manifold GIS 32

Importing OpenStreetMap data 35
Connecting to external data sources with foreign data wrappers 38

Connecting to SQL Server Spatial 38
Connecting to WFS service 39

Loading rasters using raster2pgsql 40
Importing a single raster 42
Importing multiple rasters 44

Importing data with pgrestore 45
Summary 47

Chapter 2: Spatial Data Analysis 48

Composing and decomposing geometries 49
Creating points 49

[ii]

Extracting coordinates from points 50
Composing and decomposing Multi-geometries 50

Multi-geometry decomposition 51
Composing and decomposing LineStrings 53

LineString composition 53
LineString decomposition 55

Composing and decomposing polygons 56
Polygon composition 57
Polygon decomposition 59

Spatial measurement 62
General warning - mind the SRID! 62
Measuring distances between two geometries 63
Measuring the length, area, and perimeter of geometries 64

Line length 65
Polygon perimeter 65
Polygon area 66

Geometry bounding boxes 67
Accessing bounding boxes 68
Creating bounding boxes 69
Using bounding boxes in spatial queries 69

Geometry simplification 69
Geometry validation 71

Simplicity and validity 72
Testing for simplicity and validity 73

Checking for validity 74
Repairing geometry errors 75
Validity constraint 76

Intersecting geometries 76
Nearest feature queries 78
Summary 80

Chapter 3: Data Processing - Vector Ops 81

Primer - obtaining and importing OpenStreetMap data 81
Merging geometries 82

Merging polygons 83
Merging MultiLineStrings 84

Slicing geometries 86
Splitting a polygon by LineString 86
Splitting a LineString with another LineString 88
Extracting a section of LineString 90

Buffering and offsetting geometries 92

[iii]

Offsetting features 94
Creating convex and concave hulls 96
Computing centroids, points-on-surface, and points-on-line 98

Reprojecting geometries 99
Spatial relationships 101

Touching 101
Crossing 101
Overlapping 102
Containing 103
Radius queries 105

Summary 106

Chapter 4: Data Processing - Raster Ops 107

Preparing data 108
Processing and analysis 110
Analytic and statistical functions 117
Vector to raster conversion 118
Raster to vector conversion 118
Spatial relationship 119
Metadata 122
Summary 122

Chapter 5: Exporting Spatial Data 123

Exporting data using \COPY in psql 124
Exporting data in psql interactively 124
Exporting data in psql non-interactively 125
Exporting data in PgAdmin 126

Exporting vector data using pgsql2shp 127
pgsql2sph command line 127
pgsql2shp gui 129

Exporting vector data using ogr2ogr 131
Exporting KML revisited 132
Exporting SHP 134
Exporting MapInfo TAB and MIF 135
Exporting to SQL Server 136
ogr2ogr GUI 136

Exporting data using GIS clients 137
Exporting data using QGIS 138
Exporting data using Manifold. 142

Outputting rasters using GDAL 143

[iv]

Outputting raster using psql 145
Exporting data using the PostgreSQL backup functionality 148
Summary 149

Chapter 6: ETL Using Node.js 150

Setting up Node.js 151
Making a simple Node.js hello world in the command line 152
Making a simple HTTP server 153

Handshaking with a database using Node.js PgSQL client 154
Retrieving and processing JSON data 157

Importing shapefiles revisited 157
Consuming JSON data 162

Geocoding address data 173
Consuming WFS data 179
Summary 185

Chapter 7: PostGIS – Creating Simple WebGIS Applications 186

ExtJS says Hello World 187
Configuring GeoServer web services 189

Importing test data 191
Outputting vector data as WMS services in GeoServer 192

Outputting raster data as WMS services in GeoServer 195
Outputting vector data as WFS services 200

Making use of PgRaster in a simple WMS GetMap handler 201
Consuming WMS 209

Consuming WMS in ol3 209
Consuming WMS in Leaflet 212

Enabling CORS in Jetty 214
Consuming WFS in ol3 215
Outputting and consuming GeoJSON 218

Consuming GeoJSON in ol3 218
Consuming GeoJSON in Leaflet 220

Outputting and consuming TopoJSON 221
Consuming TopoJSON in ol3 224
Consuming TopoJSON in Leaflet 225

Implementing a simple CRUD application that demonstrates vector
editing via web interfaces 227

WebGIS CRUD server in Node.js 227
WebGIS CRUD client 233

Layer manager 234
Drawing tools 234

[v]

Analysis tools - buffering 237
Summary 237

Chapter 8: PostGIS Topology 238

The conceptual model 238
The data 240
Installation 240
Creating an empty topology 241
Importing Simple Feature data into topology 243

Checking the validity of input geometries 243
Creating a TopoGeometry column and a topology layer 244
Populating a TopoGeometry column from an existing geometry 245

Inspecting and validating a topology 246
Topology validation 247

Accessing the topology data 248
Querying topological elements by a point 249

Locating nodes 250
Locating edges 250
Locating faces 252

Topology editing 252
Adding new elements 252
Creating TopoGeometries 257
Splitting and merging features 258

Splitting features 258
Merging features 262

Updating edge geometry 265
Topology-aware simplification 266

Importing sample data 266
Topology output 268

GML output 268
TopoJSON output 269

Summary 270

Chapter 9: pgRouting 271

Installing the pgRouting extension 272
Importing routing data 272

Importing shapefiles 272
Importing OSM data using osm2pgrouting 275

pgRouting algorithms 276
All pairs shortest path 277
Shortest path 278

Shortest path Dijkstra 278

[vi]

A-Star (A*) 282
K-Dijkstra 284
K-Shortest path 284
Turn restrictions shortest path (TRSP) 286

Driving distance 288
Traveling sales person 292

Handling one-way edges 295
Consuming pgRouting functionality in a web app 296
Summary 301

Index 302

Preface
PostGIS is an open source extension of the PostgreSQL object-relational database system
that allows GIS objects to be stored and allows querying for information and location
services. The aim of this book is to help you master the functionalities offered by PostGIS,
from data creation, analysis, and output to ETL and live edits.

The book begins with an overview of the key concepts related to spatial database systems
and how it applies to spatial RMDS. You will learn to load different formats into your
Postgres instance, investigate the spatial nature of your raster data, and finally export it
using built-in functionalities or third-party tools for backup or representational purposes.

Through the course of this book, you will be presented with many examples on how to
interact with the database using JavaScript and Node.js. Sample web-based applications
interacting with backend PostGIS will also be presented throughout the book, so you can
get comfortable with the modern ways of consuming and modifying your spatial data.

What this book covers
Chapter 1, Importing Spatial Data, will cover simple import procedures to import data to
PgSQL/PostGIS.

Chapter 2, Spatial Data Analysis, looks at vector data analysis, and we'll find our way
through a rich function set of PostGIS.

Chapter 3, Data Processing - Vector Ops, discusses the functions available for vector data
processing.

Chapter 4, Data Processing - Raster Ops, discusses the functions available for raster data
processing.

Chapter 5, Exporting Spatial Data, looks into exporting a dataset from PostGIS to other GIS
formats.

Chapter 6, ETL Using Node.js, explains how to perform ETL ops using JavaScript in Node.js.

Chapter 7, PostGIS – Creating Simple WebGIS Applications, focuses on publishing PostGIS
data with the usage of web platforms.

Preface

[2]

Chapter 8, PostGIS Topology, we will discusses different PostGIS Topology types and
functions that are used to manage topological objects such as faces, edges, and nodes.

Chapter 9, pgRouting, explains the pgRouting extension and its implementations.

What you need for this book
This book will guide you through the installation of all the tools that you need to follow the
examples.

Following is the list of software and the download link to work through this book:

PostgreSQL 9.x (h t t p s ://w w w . p o s t g r e s q l . o r g /d o w n l o a d /)
PostGIS 2.x (h t t p ://p o s t g i s . n e t /i n s t a l l /)
QGIS 2.x (h t t p ://w w w . q g i s . o r g /e n /s i t e /f o r u s e r s /d o w n l o a d . h t m l)
ogr2ogr / gdal (h t t p ://o g r 2g u i . c a /)
Manifold 8 (h t t p ://m a n i f o l d . n e t /u p d a t e s /d o w n l o a d s . s h t m l)
SQL SERVER 2016 (h t t p s ://w w w . m i c r o s o f t . c o m /e n - u s /s q l - s e r v e r /s q l - s e r v

e r - d o w n l o a d s)
pgAdmin 3 (Should be bundled with PostgreSQL, if not h t t p s ://w w w . p g a d m i n . o

r g /d o w n l o a d /)
OL3 (h t t p s ://o p e n l a y e r s . o r g /d o w n l o a d /)
Leaflet (h t t p ://l e a f l e t j s . c o m /d o w n l o a d . h t m l)
GeoServer 2.9 + with bundled jetty (h t t p ://g e o s e r v e r . o r g /)
ExtJs (h t t p s ://w w w . s e n c h a . c o m /p r o d u c t s /e v a l u a t e /)
Node.js (h t t p s ://n o d e j s . o r g /e n /d o w n l o a d /)
pgRouting (h t t p ://p g r o u t i n g . o r g /d o w n l o a d . h t m l)

Who this book is for
If you are a GIS developer or analyst who wants to master PostGIS to build efficient,
scalable GIS applications, this book is for you. If you want to conduct advanced analysis of
spatial data, this book will also help you. The book assumes that you have a working
installation of PostGIS in place, and have working experience with PostgreSQL.

https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://postgis.net/install/
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://www.qgis.org/en/site/forusers/download.html
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://ogr2gui.ca/
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
http://manifold.net/updates/downloads.shtml
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
https://openlayers.org/download/
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://leafletjs.com/download.html
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
http://geoserver.org/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://www.sencha.com/products/evaluate/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html
http://pgrouting.org/download.html

Preface

[3]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The next
lines of code read the link and assign it to the BeautifulSoup function."

A block of code is set as follows:

drop table if exists data_import.osgb_addresses;
create table data_import.osgb_addresses(
 uprn bigint,
 os_address_toid varchar,

Any command-line input or output is written as follows:

mastering_postgis=# \copy data_import.earthquakes_csv from data\2.5_day.csv
with DELIMITER ',' CSV HEADER

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

Preface

[4]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M a s t e r i n g - P o s t g i s . We also have other code bundles from our rich catalog of
books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/Mastering-Postgis
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /M a s t e r i n g P o s t g i s _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringPostgis_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Importing Spatial Data

Learning database tools means working with data, so we need to cover that aspect first.
There are many ways of importing data to PgSQL/PostGIS; some are more database-
specific, some are PostGIS-specific, and some use external tools. To complicate things a bit
more, quite often real-world data import processes are wrapped into programs that perform
different tasks and ops in order to maintain the data quality and integrity when importing
it. The key though is that even very complex import tools usually use simpler procedures or
commands in order to achieve their goals.

Such simple import procedures are described in this chapter. We specifically focus on:

Importing flat data through both psql and pgAdmin and extracting spatial
information from flat data
Importing shape files using shp2pgsql
Importing vector data using ogr2ogr
Importing vector data using GIS clients
Importing OpenStreetMap data
Connecting to external data sources with data wrappers
Loading rasters using raster2pgsql
Importing data with pgrestore

Importing Spatial Data

[7]

Obtaining test data
Before we start importing, let's get some data examples in different formats, specifically
these:

Earthquake data in CSV and KML format (h t t p s ://e a r t h q u a k e . u s g s . g o v /e a r t

h q u a k e s /m a p /)
UK Ordnance Survey sample data (h t t p s ://w w w . o r d n a n c e s u r v e y . c o . u k /b u s i n

e s s - a n d - g o v e r n m e n t /l i c e n s i n g /s a m p l e - d a t a /d i s c o v e r - d a t a . h t m l)
AddressBase in CSV and GML
Code-Point Polygons in SHP, TAB and MIF
Points of Interest in TXT format

NaturalEarth (h t t p ://w w w . n a t u r a l e a r t h d a t a . c o m /d o w n l o a d s /110m - p h y s i c a l -

v e c t o r s /)
110M coastlines
110M land
50M Gray Earth

You may either download the data using the links provided or find it in
this chapter's resources.
The location you extract the data to is not important really, as you can
later address it using either relative or absolute file paths.

Setting up the database
All the examples in this chapter use a database named mastering_postgis. This database
has been created off the postgis template.

The PgSQL on my dev machine listens on port 5434, which is not the default port for the
Postgres database (default is 5432); so when using a default DB setup, you may have to
adjust some of the examples a bit.

If you need to change the port your db listens on, you should locate the db
data directory, where you will find a postgresql.conf file. This is a text
file, so you can edit it with an ordinary text editor.
In order to adjust the port, find a port configuration in the Connections and
Authentication section.

https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
https://www.ordnancesurvey.co.uk/business-and-government/licensing/sample-data/discover-data.html
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/
http://www.naturalearthdata.com/downloads/110m-physical-vectors/

Importing Spatial Data

[8]

Schemas are a great way of managing the data and splitting it into meaningful collections.
In most scenarios, one will have some production data, archive data, incoming data, and so
on sensibly kept in separate schemas. Using additional schemas will depend on your
requirements, but we do encourage you to introduce using schemas into your daily practice
if you do not yet do so. The following examples import the data into tables defined in the
data_import schema.

Importing flat data
Loading flat data may seem to be a bit dull initially but it is important to understand that
many popular and interesting datasets often contain the spatial information in very
different formats, such as:

Coordinates expressed in Lon/Lat or projected coordinates
Encoded geometry, for example WKT, TopoJSON, GeoJSON
Location in the form of an address
Location in non-cartesian coordinates, for example start point, angle and
direction
While the earlier examples indicate the data would require further processing in
order to extract the spatial content into a usable form, clearly ability to import flat
datasets should not be underestimated

Flat data in our scenario is data with no explicitly expressed geometry -
non-spatial format, text-based files

Importing data using psql
Psql is the pgsql's command-line tool. While one can achieve quite a lot with GUI based
database management utilities, psql is very useful when one needs to handle database
backups, management and alike via scripting. When there is no GUI installed on the server,
psql becomes pretty much the only option so it is worth being familiar with it even if you're
not a fan.

In order to import the data in psql we will use a \COPY command. This requires us to define
the data model for the incoming data first.

Importing Spatial Data

[9]

Defining the table data model from a text file may be prone to errors that will prevent data
from being imported. If for of some reason you are not sure what data types are stored in
the particular columns of your source file you can import all the data as text and then re-
cast it as required at a later time.

Importing data interactively
In this example we will import the earthquakes data from USGS. So let's fire up psql and
connect to the database server:

F:\mastering_postgis\chapter02>psql -h localhost -p 5434 -U postgres

You should see a similar output:

 psql (9.5.0)
 Type "help" for help.
 postgres=#

Then we need to connect to the mastering_postgis database:

 postgres=# \c mastering_postgis

The following output should be displayed:

 You are now connected to database "mastering_postgis" as user
 "postgres".
 mastering_postgis=#

In the psql examples I am using postgres user. As you may guess, it is a
superuser account. This is not the thing you would normally do, but it will
keep the examples simple.
In a production environment, using a db user with credentials allowing
access to specific resources is a sensible approach.

If you have not had a chance to create our data_import schema, let's take care of it now by
typing the following command:

 mastering_postgis=# create schema if not exists data_import;

You should see a similar output:

 NOTICE: schema "data_import" already exists, skipping
 CREATE SCHEMA

Importing Spatial Data

[10]

Once the schema is there, we create the table that will store the data. In order to do so just
type or paste the following into psql:

 create table data_import.earthquakes_csv (
 "time" timestamp with time zone,
 latitude numeric,
 longitude numeric,
 depth numeric,
 mag numeric,
 magType varchar,
 nst numeric,
 gap numeric,
 dmin numeric,
 rms numeric,
 net varchar,
 id varchar,
 updated timestamp with time zone,
 place varchar,
 type varchar,
 horizontalError numeric,
 depthError numeric,
 magError numeric,
 magNst numeric,
 status varchar,
 locationSource varchar,
 magSource varchar
);

You should see the following output:

 mastering_postgis=# create table data_import.earthquakes_csv (
 mastering_postgis(# "time" timestamp with time zone,
 mastering_postgis(# latitude numeric,
 mastering_postgis(# longitude numeric,
 mastering_postgis(# depth numeric,
 mastering_postgis(# mag numeric,
 mastering_postgis(# magType varchar,
 mastering_postgis(# nst numeric,
 mastering_postgis(# gap numeric,
 mastering_postgis(# dmin numeric,
 mastering_postgis(# rms numeric,
 mastering_postgis(# net varchar,
 mastering_postgis(# id varchar,
 mastering_postgis(# updated timestamp with time zone,
 mastering_postgis(# place varchar,
 mastering_postgis(# type varchar,
 mastering_postgis(# horizontalError numeric,
 mastering_postgis(# depthError numeric,

Importing Spatial Data

[11]

 mastering_postgis(# magError numeric,
 mastering_postgis(# magNst numeric,
 mastering_postgis(# status varchar,
 mastering_postgis(# locationSource varchar,
 mastering_postgis(# magSource varchar
 mastering_postgis(#);
 CREATE TABLE

Now, as we have our data table ready, we can finally get to the import part. The following
command should handle importing the data into our newly created table:

\copy data_import.earthquakes_csv from data\2.5_day.csv with DELIMITER ','
CSV HEADER

You should see a similar output:

mastering_postgis=# \copy data_import.earthquakes_csv from data\2.5_day.csv
with DELIMITER ',' CSV HEADER
 COPY 25

If you require a complete reference on the \COPY command, simply type
in: \h COPY into the cmd.

While you can customize your data after importing, you may wish to only import a subset
of columns in the first place. Unfortunately \COPY command imports all the columns
(although you may specify where to put them) so the solution to this would be:

Create a table that models the input CSV
Import all the data
Create a table with a subset of columns
Copy data over
Delete the input table

Even though everything said earlier is possible in psql, it requires quite a lot of typing.
Because of that we will take care of this scenario in the next stage. Demonstrating the non-
interactive psql mode.

Importing Spatial Data

[12]

Importing data non-interactively
For the non-interactive psql data import example we'll do a bit more than in the interactive
mode. We'll:

Import the full earthquakes dataset
Select a subset of earthquakes data mentioned in the previous example and insert
it into its own table
Import another dataset - in this case the Ordnance Survey's POIs

Basically the non-interactive usage of psql means we simply provide it with an SQL to
execute. This way we can put together many statements without having to execute them
one by one.

Once again we will need the data model prior to loading the data, and then a \COPY
command will be used.

If you're still in psql, you can execute a script by simply typing:

\i path\to\the\script.sql

For example:

\i F:/mastering_postgis/chapter02/code/data_import_earthquakes.sql

You should see a similar output:

mastering_postgis-# \i
F:/mastering_postgis/chapter02/code/data_import_earthquakes.sql
 CREATE SCHEMA
 psql:F:/mastering_postgis/chapter02/code/data_import_earthquakes.sql:5:
NOTICE: table "earthquakes_csv" does not exist, skipping
 DROP TABLE
 CREATE TABLE
 COPY 25
psql:F:/mastering_postgis/chapter02/code/data_import_earthquakes.sql:58:
NOTICE: table "earthquakes_csv_subset" does not exist, skipping
 DROP TABLE
 SELECT 25
 mastering_postgis-#

Importing Spatial Data

[13]

If you quit psql already, type the following command into cmd:

psql -h host -p port -U user -d database -f path\to\the\script.sql

For example:

psql -h localhost -p 5434 -U postgres -d mastering_postgis -f
F:\mastering_postgis\chapter02\code\data_import_earthquakes.sql

You should see a similar output:

F:\mastering_postgis\chapter02>psql -h localhost -p 5434 -U postgres -d
mastering_postgis -f
F:\mastering_postgis\chapter02\code\data_import_earthquakes.sql
 psql:F:/mastering_postgis/chapter02/code/data_import_earthquakes.sql:2:
NOTICE: schema "data_import" already exists, skipping
 CREATE SCHEMA
 DROP TABLE
 CREATE TABLE
 COPY 25
 DROP TABLE
 SELECT 25

The script executed earlier is in the book's code repository under Chapter02/code/
data_import_earthquakes.sql.

Loading OS POI data is now a piece of cake. This dataset is in a bit of a different format
though, so it requires slight adjustments. You can review the code in Chapter02/code/
data_import_gb_poi.sql.

Importing data using pgAdmin
In this section we'll import some new data we have not interacted with before - this time
we'll have a look at the Ordnance Survey's address data we obtained in the CSV format.

Depending on the pgAdmin version, the UI may differ a bit. The described
functionality should always be present though.
For the examples involving pgAdmin, screenshots were taken using
pgAdmin III (1.22.2).

Importing Spatial Data

[14]

PgAdmin's import functionality is basically a wrapper around the \COPY so it does require
a data model in order to work. Because of that, let's quickly create a table that will be
populated with the imported data. You can do it with the GUI by simply right-clicking a
schema node you want to create the table in and choosing New Object | New Table and
then providing all the necessary model definitions in the displayed window:

You can also type some SQL which in many cases is a bit quicker:

drop table if exists data_import.osgb_addresses;
create table data_import.osgb_addresses(
 uprn bigint,
 os_address_toid varchar,
 udprn integer,
 organisation_name varchar,
 department_name varchar,
 po_box varchar,

Importing Spatial Data

[15]

 sub_building_name varchar,
 building_name varchar,
 building_number varchar,
 dependent_thoroughfare varchar,
 thoroughfare varchar,
 post_town varchar,
 dbl_dependent_locality varchar,
 dependent_locality varchar,
 postcode varchar,
 postcode_type varchar,
 x numeric,
 y numeric,
 lat numeric,
 lon numeric,
 rpc numeric,
 country varchar,
 change_type varchar,
 la_start_date date,
 rm_start_date date,
 last_update_date date,
 class varchar
);

Once our table is ready, importing data is just a matter of right clicking the table node in
PgAdmin and choosing Import. An import wizard that assists with the import process will
be displayed:

Importing Spatial Data

[16]

All the earlier could obviously be achieved with pure SQL and in fact we
have done this already in the previous section on importing data in psql in
non-interactive mode. You can review the SQL code available in
Chapter02/code for details.

Extracting spatial information from flat data
As we have some flat data already in our database, it's time to extract the spatial
information. So far all the datasets, used Cartesian coordinate systems so our job is really
straightforward:

drop table if exists data_import.earthquakes_subset_with_geom;
select
 id,
 "time",
 depth,
 mag,
 magtype,
 place,Points of Interest in TXT format
 ST_SetSRID(ST_Point(longitude, latitude), 4326) as geom
into data_import.earthquakes_subset_with_geom
from data_import.earthquakes_csv;

This example extracts a subset of data and puts data into a new table with coordinates being
expressed as a geometry type, rather than two columns with numeric data appropriate for
Lon and Lat.

In order to quickly preview the data, we dump the table's content to KML using ogr2ogr
(this is a little spoiler on the next chapter on exporting the data from PostGIS indeed):

ogr2ogr -f "KML" earthquakes_from_postgis.kml PG:"host=localhost port=5434
user=postgres dbname=mastering_postgis"
data_import.earthquakes_subset_with_geom -t_srs EPSG:4326

Importing Spatial Data

[17]

Such KML can be viewed for example in Google Earth (you can use the original KML
downloaded from USGS just as a cross check for the output data):

More examples of extracting the spatial data from different formats are
addressed in the ETL chapter.

Importing shape files using shp2pgsql
ESRI shapefile (SHP) is still the most common exchange format for sharing GIS data. The
format itself is made of a few files such as SHP, SHX, DBF, andPRJ, where the first three are
the required files and the file with projection information is not obligatory.

Importing Spatial Data

[18]

The standard PostGIS tool for loading shapefiles is shp2pgsql - you will find it in the bin
folder of your postgres installation. shp2pgsql is a command-line utility that can either
extract the shapefile data into SQL or pipe the output directly into psql (we'll see both
approaches). shp2pgsql also has a GUI version that can be accessed directly in PgAdmin.

In this example, we'll use some NaturalEarth shapefiles we downloaded earlier. We will
import the coastlines shapefile using the CMD version of shp2pgsql and then we'll add
land masses using the GUI version.

shp2pgsql in cmd
shp2pgsql has an extensive list of parameters that can be accessed by simply typing
shp2pgsql in the cmd. We will not use all the options but rather explain the most common
ones.

The basic usage of the utility is as follows:

shp2pgsql [<options>] <shapefile> [[<schema>.]<table>]

For example:

shp2pgsql -s 4326 ne_110m_coastline data_import.ne_coastline

Basically you specify what shapefile you want to import and where. If you executed the
 earlier command, you would just see the shp2pgsql plain SQL output logged to the
console, similar to this:

...
INSERT INTO "data_import"."ne_coastline" ("scalerank","featurecla",geom)
VALUES
('3','Country','0105000020E6100000010000000102000000060000006666666666A65AC
06766666666665240713D0AD7A3505AC0295C8FC2F56852400000000000205AC07B14AE47E1
5A5240B91E85EB51585AC0713D0AD7A33052405C8FC2F528BC5AC03E0AD7A3705D524066666
66666A65AC06766666666665240');
 COMMIT;
 ANALYZE "data_import"."ne_coastline";

So basically, we need to do something with the utility output in order to make use of it.
Let's save the output to an SQL file and let psql read it first:

shp2pgsql -s 4326 ne_110m_coastline data_import.ne_coastline >
ne_110m_coastline.sql
psql -h localhost -p 5434 -U postgres -d mastering_postgis -f
ne_110m_coastline.sql

Importing Spatial Data

[19]

You should see a similar output:

 SET
 SET
 BEGIN
 CREATE TABLE
 ALTER TABLE

 addgeometrycolumn

 data_import.ne_coastline.geom SRID:4326 TYPE:MULTILINESTRING DIMS:2
 (1 row)

 INSERT 0 1
 ...
 INSERT 0 1
 COMMIT
 ANALYZE

I suggest you have a look at the generated SQL so you get an idea of what is actually
happening behind the scenes.

Now let's pipe the shp2pgsql output directly to psql:

shp2pgsql -s 4326 ne_110m_coastline data_import.ne_coastline | psql -h
localhost -p 5434 -U postgres -d mastering_postgis

The cmd output will be exactly the same as the one we have already seen when reading
data from the SQL file.

You will have to drop the data_import.ne_coastline table before
importing the data again; otherwise the command in its current shape will
fail.

There are some shp2pgsql options that are worth remembering:

-s SRID: Specifies the shp data projection identifier. When used in the following
form: -s SRID1:SRID2 makes the shp2pgsql apply a coordinate system
transformation, so projection of the data changes is required.
-p: Turns on the 'prepare' mode - only a table definition is output.
-d: Drops and recreates a table.
-a: Appends data to the existing table, provided its schema is exactly the same as
the schema of the incoming data.

Importing Spatial Data

[20]

-g: Allows specifying of the geometry column name; the default is geom (or geog
if you decide to use geography with the -G param).
-m <filename>: Specifies a file name that contains column mapping for the DBF
file. This way, you can remap dbf column names to your preference.
-n: Only imports DBF and no spatial data.

Importing data with SRID transformation: -s SRID1:SRID2.

The shp2pgsql GUI version
shp2pgsql also has a GUI version. In order to use it, when in PgAdmin, simply choose
Plugins | PostGIS Shapefile and DBF loader 2.2 (the version may vary); the
following import wizard will be displayed:

Importing Spatial Data

[21]

In pgAdmin 4, accessing the shapefile loader GUI may not be so obvious.
To trigger the tool, try typing shp2pgsql-gui in the shell/command line.

Similar to the cmd version of the utility, you can specify the schema, and you should specify
the SRID.

The nice thing about the GUI version of shp2pgsql is that it lets one import multiple files
at once.

In the options dialogue, you can specify data encoding, decide whether or not you would
like to create a spatial index after importing, choose geography over geometry, and so on:

Importing vector data using ogr2ogr
ogr2ogr is the GDAL's vector transform utility. It is - not without reason - considered a
Swiss Army knife for vector transformations. Despite its size, ogr2ogr can handle a wide
range of formats and this makes it a really worthy tool.

Importing Spatial Data

[22]

We'll use ogr2ogr to import a few data formats other than SHP, although ogr2ogr can
obviously import SHP too. For this scenario, we'll use some data downloaded earlier:

OS GB address base in GML format
OS GB code point polygons in MapInof MIF & TAB formats
USGS earthquakes in KML format

Some of the most common ogr2ogr params are:

-f: The format of the output (when importing to PostGIS it will be PostgreSQL).
-nln: Assigns a name to the layer. In the case of importing the data to PostGIS
this will be the table name.
-select: Lets you specify a comma separated list of columns to pick.
-where: Lets you specify a sql like query to filter out the data.
append: Appends data to the output dataset.
overwrite: Overwrites the output datasource - in case of PostgreSQL it will
drop and re-create a table.
s_srs: Specifies the input SRID.
t_srs: Transforms coordinates to the specified SRID.
a_srs: Specifies the output SRID.

lco NAME=VALUE: Layer creation options - these are driver
specific; for pgsql options, see h t t p ://w w w . g d a l . o r g /d r v _ p g . h t m l

. The most commonly used layer creation options are:
LAUNDER: This defaults to YES. It is responsible for converting
column names into pgsql compatible ones (lower case,
underscores).
PRECISION: This defaults to YES. It is responsible for using
numeric and char types over float and varchar.
GEOMETRY_NAME: Defaults to wkb_geometry.

For a full list of ogr2ogr params, just type ogr2ogr.
Ogr2ogr has an accompanying utility called ogrinfo. This tool lets one
inspect the metadata of a dataset. Verifying the metadata of any dataset
prior to working with it is considered good practice and one should get
into the habit of always using it before importing or exporting the data.

http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html
http://www.gdal.org/drv_pg.html

Importing Spatial Data

[23]

Importing GML
Let's start with importing the GML of the OS GB address base. First we'll see what data
we're dealing with exactly:

 ogrinfo sx9090.gml

The following should be the output:

 Had to open data source read-only.
 INFO: Open of `sx9090.gml'
 using driver `GML' successful.
 1: Address (Point)

We can then review the layer information:

 ogrinfo sx9090.gml Address -so

You should see a similar output:

 Had to open data source read-only.
 INFO: Open of `sx9090.gml'
 using driver `GML' successful.

 Layer name: Address
 Geometry: Point
 Feature Count: 42861
 Extent: (-3.560100, 50.699470) - (-3.488340, 50.744770)
 Layer SRS WKT:
 GEOGCS["ETRS89",
 DATUM["European_Terrestrial_Reference_System_1989",
 SPHEROID["GRS 1980",6378137,298.257222101,
 AUTHORITY["EPSG","7019"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6258"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4258"]]
 gml_id: String (0.0)
 uprn: Real (0.0)
 osAddressTOID: String (20.0)
 udprn: Integer (0.0)
 subBuildingName: String (25.0)
 buildingName: String (36.0)
 thoroughfare: String (27.0)
 postTown: String (6.0)

Importing Spatial Data

[24]

 postcode: String (7.0)
 postcodeType: String (1.0)
 rpc: Integer (0.0)
 country: String (1.0)
 changeType: String (1.0)
 laStartDate: String (10.0)
 rmStartDate: String (10.0)
 lastUpdateDate: String (10.0)
 class: String (1.0)
 buildingNumber: Integer (0.0)
 dependentLocality: String (27.0)
 organisationName: String (55.0)
 dependentThoroughfare: String (27.0)
 poBoxNumber: Integer (0.0)
 doubleDependentLocality: String (21.0)
 departmentName: String (37.0)

-so param makes ogrinfo display the data summary only; otherwise,
info on a full dataset would be displayed.

Once we're ready to import the data, let's execute the following command:

ogr2ogr -f "PostgreSQL" PG:"host=localhost port=5434 user=postgres
dbname=mastering_postgis" sx9090.gml -nln data_import.osgb_address_base_gml
-geomfield geom

At this stage, the address GML should be available in our database.

We did not specify the SRID of the GML data. This is because this
information is present in GML and the utility picks it up automatically.

Importing MIF and TAB
Both MIF and TAB are MapInfo formats. TAB is the default format that contains formatting,
while MIF is the interchange format.

Importing Spatial Data

[25]

We'll start with reviewing metadata:

 ogrinfo EX_sample.mif

And then:

 ogrinfo EX_sample.mif EX_Sample -so
 Had to open data source read-only.
 INFO: Open of `EX_sample.mif'
 using driver `MapInfo File' successful.

 Layer name: EX_sample
 Geometry: Unknown (any)
 Feature Count: 4142
 Extent: (281282.800000, 85614.570000) - (300012.000000,
 100272.000000)
 Layer SRS WKT:
 PROJCS["unnamed",
 GEOGCS["unnamed",
 DATUM["OSGB_1936",
 SPHEROID["Airy 1930",6377563.396,299.3249646],
 TOWGS84[375,-111,431,-0,-0,-0,0]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",49],
 PARAMETER["central_meridian",-2],
 PARAMETER["scale_factor",0.9996012717],
 PARAMETER["false_easting",400000],
 PARAMETER["false_northing",-100000],
 UNIT["Meter",1]]
 POSTCODE: String (8.0)
 UPP: String (20.0)
 PC_AREA: String (2.0)

Please note that ogrinfo projection metadata for our MIF file does not
specify the EPSG code. This is fine, as the projection definition is present.
But it will result in ogr2ogr creating a new entry in the
spatial_ref_sys, which is not too good, as we'll end up with the wrong
coordsys identifiers; the coordinate reference id will be the next
available.

Importing Spatial Data

[26]

This is because ogr2ogr expands the coordinate reference into a WKT
string and then does a string comparison against the coordsys identifiers
definitions in the spatial_ref_sys table; minor differences in
formatting or precision will result in ogr2ogr failing to match coordsys.
In such a scenario, a new entry will be created; for example, if you happen
to use the EPSG:3857 coordinate system and the system's definition is
slightly different and cannot be matched, the assigned SRID will not be
3857, but the next available ID will be chosen.
A solution to this is to specify the exact coordinate system; ogr2ogr
should output the data via the a_srs parameter.

Once ready, we can import the data:

ogr2ogr -f "PostgreSQL" PG:"host=localhost port=5434 user=postgres
dbname=mastering_postgis" EX_sample.mif -nln
data_import.osgb_code_point_polygons_mif -lco GEOMETRY_NAME=geom -a_srs
EPSG:27700

If you followed the very same procedure for TAB file and loaded the data, both datasets are
now in their own tables in the data_import schema:

ogr2ogr -f "PostgreSQL" PG:"host=localhost port=5434 user=postgres
dbname=mastering_postgis" EX_sample.tab -nln
data_import.osgb_code_point_polygons_tab -lco GEOMETRY_NAME=geom -a_srs
EPSG:27700

Importing KML
As usual, we'll start with the dataset's metadata checkup:

 ogrinfo 2.5_day_age.kml

The output shows that there is more than one layer:

 INFO: Open of `2.5_day_age.kml'
 using driver `LIBKML' successful.
 1: Magnitude 5
 2: Magnitude 4
 3: Magnitude 3
 4: Magnitude 2

Importing Spatial Data

[27]

Therefore, in order to review metadata for each layer at once, the following command
should be used:

 ogrinfo 2.5_day_age.kml -al -so

The output of the previous command is rather longish, so we'll truncate it a bit and only
show the info for the first layer:

 INFO: Open of `2.5_day_age.kml'
 using driver `LIBKML' successful.

 Layer name: Magnitude 5
 Geometry: Unknown (any)
 Feature Count: 2
 Extent: (-101.000100, -36.056300) - (120.706400, 13.588200)
 Layer SRS WKT:
 GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9108"]],
 AUTHORITY["EPSG","4326"]]
 Name: String (0.0)
 description: String (0.0)
 timestamp: DateTime (0.0)
 begin: DateTime (0.0)
 end: DateTime (0.0)
 altitudeMode: String (0.0)
 tessellate: Integer (0.0)
 extrude: Integer (0.0)
 visibility: Integer (0.0)
 drawOrder: Integer (0.0)
 icon: String (0.0)
 snippet: String (0.0)

Importing Spatial Data

[28]

This time, EPSG information is available, so we do not have to worry; ogr2ogr will create
extra SRID definition in the database.

Once we've confirmed that this is the exact dataset we'd like to import, we can continue
with the following command:

ogr2ogr -f "PostgreSQL" PG:"host=localhost port=5434 user=postgres
dbname=mastering_postgis" 2.5_day_age.kml -nln
data_import.usgs_earthquakes_kml -lco GEOMETRY_NAME=geom -append

Note the append param in the command earlier. This is required because
our KML has more than one layer and ogr2ogr is importing them one by
one. Without the append param, only the first layer would be imported
and then ogr2ogr would fail with a similar output:
FAILED: Layer data_import.usgs_earthquakes_kml already
exists, and -append not specified.
Consider using -append, or -overwrite.
ERROR 1: Terminating translation prematurely after failed
translation of layer Magnitude 4 (use -skipfailures to
skip errors)

The cmd output should be similar to:

WARNING: Layer creation options ignored since an existing layer is
 being appended to.
WARNING: Layer creation options ignored since an existing layer is
 being appended to.
WARNING: Layer creation options ignored since an existing layer is
 being appended to.

At this stage, the KML dataset should have made it to our PostGIS database.

ogr2ogr GUI (Windows only)
For those preferring GUI over CMD, there is an alternative to plain old ogr2ogr--ogr2gui
available from http://www.ogr2gui.ca/.

http://www.ogr2gui.ca/

Importing Spatial Data

[29]

Simply download the required archive, extract it, and launch the appropriate .exe. After
having played with ogr2ogr a bit already, the GUI should be rather self-explanatory:

Importing Spatial Data

[30]

Importing data using GIS clients
Many GIS software packages can directly connect to databases for reading and writing the
data; from our perspective, they are just more database clients. In this section, we'll have a
quick look at the very well-known QGIS and the certainly less popular but very powerful
Manifold GIS.

Both can export data to databases and read it back. QGIS has a specialized PostGIS export
module called SPIT; Manifold's export facility is built in into the GUI and follows the same
export routines as other formats handled by the software.

Exporting a shapefile to PostGIS using QGIS and
SPIT
QGIS offers a PostGIS export module called SPIT. You can access it by choosing
Database\Spit\Import Shapefiles to PostGIS:

Importing Spatial Data

[31]

SPIT's GUI is very clear and easy to understand. You can import many files at once and you
can specify the destination schema and table names. If required you can change the default
Spit's geometry name (the_geom) to your liking. SRID also can be changed, but it will be
applied to all the imported files. Once you provide all the required information and click
on OK, a progress window is displayed and the data is exported to PostGIS.

In newer versions of QGIS, you may not find SPIT anymore. In such cases,
you can use a DbManager instead.

Exporting shapefile to PostGIS using QGIS and
DbManager
Before using DbManager, you should load a shapefile you want to import to a database.

When ready, launch DbManager by going to Database\DB Manager\DB Manager. When
the DbManager UI displays, locate your database, expand its node and select the schema
you want to import the data to and then click the Import button (arrow down). You should
be prompted with an import dialog; the Input dropdown lets you choose the layer to
import.

Once you are happy with the import options (you may want to click the Update options
button to populate the dialog), click on OK. When the import finishes you should see a
confirmation dialogbox:

Importing Spatial Data

[32]

Exporting spatial data to PostGIS from Manifold
GIS
In order to export the data, Manifold needs to import it internally first. This means that we
do not export a particular format but rather we simply export spatial data. Once you bring
 a shapefile into Manifold, MapInfo TAB or MIF, SQL Server spatial table or any other
supported vector format, exporting it to PostGIS is exactly the same for all of them.

Importing Spatial Data

[33]

In order to export a vector component, right-click on its node in the project tree and choose
the export option. You will see an export dialog, where you should pick the appropriate
export format; in this scenario, you need to choose Data Source. You will then be presented
with a data source setup window, where you can either pick an existing connection or
configure a new one:

Importing Spatial Data

[34]

Once you choose the appropriate connection, you can then set up the actual export
parameters:

You can choose which columns you want to export, and the name of the identity, geometry,
and version columns.

There is a minor inconvenience with the exporter: it does not allow for
adjusting of the destination schema and always exports to the public
schema.

Importing Spatial Data

[35]

Manifold tries to find the PostGIS projection that best matches the Manifold projection.
Unfortunately, it is not always possible as Manifold as such does not rely on EPSG
coordinates systems definitions, but rather uses its internal mechanisms for handling
projections. If Manifold does not match the PostGIS side projection, you can select it
manually.

Export dialogue also offers an option to transform coordinates upon export and create
indexes and CREATE/UPDATE triggers when data gets to the database.

In order to enable PostgreSQL connections in Manifold, you may have to
copy some PgSQL DLLs over to the Manifold installation directory. The
exact information on how to do this can be easily found at
georeference.org, the manifold user community forum.

Importing OpenStreetMap data
For importing OSM data into PostGIS, we'll use a command line utility called osm2pgsql.
Apparently, making a Linux build of osm2pgsql is straightforward; getting one that runs
on Windows may require some more effort as described here:
https://github.com/openstreetmap/osm2pgsql/issues/17,
https://github.com/openstreetmap/osm2pgsql/issues/472.

I have used a Cygwin build as mentioned here:

http://wiki.openstreetmap.org/wiki/Osm2pgsql#Cygwin

Once we have the osm2pgsql ready, we'll need some data. For the sake of simplicity, I have
downloaded the Greenwich Park area from
https://www.openstreetmap.org/export#map=16/51.4766/0.0003 and saved the file as
greenwich_observatory.osm (you will find it in the data accompanying this chapter).

The downloaded file is actually an XML file. Do have a look what's inside to get an idea of
the data osm2pgsql is dealing with.

In order to take advantage of the OSM tags used to describe the data, we will need the
PostgreSQL hstore extension. Basically it allows for storing key-value pairs in a column, so
data with flexible schema can easily be stored. In order to install it, you need to execute the
following query in either PgAdmin or psql:

CREATE EXTENSION hstore;

http://georeference.org
https://github.com/openstreetmap/osm2pgsql/issues/17
https://github.com/openstreetmap/osm2pgsql/issues/472
http://wiki.openstreetmap.org/wiki/Osm2pgsql#Cygwin
https://www.openstreetmap.org/export#map=16/51.4766/0.0003

Importing Spatial Data

[36]

In order to import OSM data, issue the following command, making sure you adjust the
paths and db connection details to your environment:

osm2pgsql.exe -H localhost -P 5434 -U postgres -W -d mastering_postgis -S
default.style ../data/greenwich_observatory.osm -hstore

If you happen to receive a message such as Default style not found,
please make sure to provide a valid path to the styles definition such as
/usr/share/osm2pgsql/default.style.

You should see a similar output:

osm2pgsql SVN version 0.85.0 (64bit id space)
Password:
Using projection SRS 900913 (Spherical Mercator)
Setting up table: planet_osm_point
NOTICE: table "planet_osm_point" does not exist, skipping
NOTICE: table "planet_osm_point_tmp" does not exist, skipping
Setting up table: planet_osm_line
NOTICE: table "planet_osm_line" does not exist, skipping
NOTICE: table "planet_osm_line_tmp" does not exist, skipping
Setting up table: planet_osm_polygon
NOTICE: table "planet_osm_polygon" does not exist, skipping
NOTICE: table "planet_osm_polygon_tmp" does not exist, skipping
Setting up table: planet_osm_roads
NOTICE: table "planet_osm_roads" does not exist, skipping
NOTICE: table "planet_osm_roads_tmp" does not exist, skipping
Using built-in tag processing pipeline
Allocating memory for sparse node cache
Node-cache: cache=800MB, maxblocks=0*102400, allocation method=8192
Mid: Ram, scale=100
!! You are running this on 32bit system, so at most
!! 3GB of RAM can be used. If you encounter unexpected
!! exceptions during import, you should try running in slim
!! mode using parameter -s.

Reading in file: ../data/greenwich_observatory.osm
Processing: Node(4k 4.7k/s) Way(0k 0.55k/s) Relation(41 41.00/s) parse
time: 0s
Node stats: total(4654), max(4268388189) in 0s
Way stats: total(546), max(420504897) in 0s
Relation stats: total(41), max(6096780) in 0s
Committing transaction for planet_osm_point
Committing transaction for planet_osm_line
Committing transaction for planet_osm_polygon
Committing transaction for planet_osm_roads
Writing relation (41)

Importing Spatial Data

[37]

Sorting data and creating indexes for planet_osm_point
Analyzing planet_osm_point finished
Sorting data and creating indexes for planet_osm_line
Sorting data and creating indexes for planet_osm_polygon
Analyzing planet_osm_line finished
node cache: stored: 4654(100.00%), storage efficiency: 50.00% (dense
blocks: 0, sparse nodes: 4654), hit rate: 2.00%
Sorting data and creating indexes for planet_osm_roads
Analyzing planet_osm_polygon finished
Analyzing planet_osm_roads finished
Copying planet_osm_point to cluster by geometry finished
Creating geometry index on planet_osm_point
Creating indexes on planet_osm_point finished
All indexes on planet_osm_point created in 0s
Completed planet_osm_point
Copying planet_osm_line to cluster by geometry finished
Creating geometry index on planet_osm_line
Creating indexes on planet_osm_line finished
Copying planet_osm_polygon to cluster by geometry finished
Creating geometry index on planet_osm_polygon
All indexes on planet_osm_line created in 0s
Completed planet_osm_line
Creating indexes on planet_osm_polygon finished
Copying planet_osm_roads to cluster by geometry finished
Creating geometry index on planet_osm_roads
All indexes on planet_osm_polygon created in 0s
Completed planet_osm_polygon
Creating indexes on planet_osm_roads finished
All indexes on planet_osm_roads created in 0s
Completed planet_osm_roads
Osm2pgsql took 1s overall

At this stage, you should have the OSM data imported to the public schema. Thanks to
using the hstore datatype for tags column, we can now do the following type of queries:

select name FROM planet_osm_point where ((tags->'memorial') = 'stone');

When executed in psql with the dataset used in this example, you should see the following
output:

 name

 Prime Meridian of the World
(1 row)

Importing Spatial Data

[38]

You may want to index the tags columns in order to optimize the query
performance.

Connecting to external data sources with
foreign data wrappers
Since PostgreSQL 9.1, one can use Foreign Data Wrappers (FDW) in order to connect to the
external data sources that are then treated as they were local tables. More information can
be found on the PostgreSQL wiki:
https://wiki.postgresql.org/wiki/Foreign_data_wrappers.

Querying the external files or databases seems to be standard these days. But how about
querying WFS services or OSM directly? Now, this sounds cool, doesn't it? You should
certainly have a look at some of the clever GEO data wrappers:

ogr_fdw: https://github.com/pramsey/pgsql-ogr-fdw
osm_pbf_fdw: https://github.com/vpikulik/postgres_osm_pbf_fdw

In this example, we'll use ogr_fdw to connect to some external data sources. Starting with
PostGIS 2.2, it is a part of the bundle and there is no need to install it as it should already be
available.

Examples shown in this section can be executed in both psql or in
PgAdmin.

Connecting to SQL Server Spatial
First we need to create a server:

CREATE SERVER fdw_sqlserver_test
 FOREIGN DATA WRAPPER ogr_fdw
 OPTIONS (
 datasource
'MSSQL:server=CM_DOM\MSSQLSERVER12;database=hgis;UID=postgres_fdw;PWD=postg
res_fdw',
 format 'MSSQLSpatial');

https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://github.com/pramsey/pgsql-ogr-fdw
https://github.com/vpikulik/postgres_osm_pbf_fdw

Importing Spatial Data

[39]

You may have noticed I have created a postgres_fdw user with the same
password.

If you're using Postgre SQL 9.5+, you can use the IMPORT SCHEMA command:

IMPORT FOREIGN SCHEMA "dbo.Wig100_skorowidz"
FROM SERVER fdw_sqlserver_test INTO data_linked;

Otherwise you will have to specify the table schema explicitly:

CREATE FOREIGN TABLE data_linked.dbo_wig100_skorowidz
 (fid integer ,
 geom public.geometry ,
 oid integer ,
 gid integer ,
 version integer ,
 godlo character varying ,
 nazwa character varying ,
 nazwa2 character varying ,
 kalibracja character varying ,
 pas real ,
 slup real)
 SERVER fdw_sqlserver_test
 OPTIONS (layer 'dbo.Wig100_skorowidz');

By default, PgAdmin does not display foreign tables, so you may have to
go to File | Options and tick the Foreign Tables checkbox in the Browser
node. In PgAdmin 4, foreign tables seem to be visible by default.

At this stage, you should be able to query the foreign table as if it was local.

Connecting to WFS service
This example is based on the ogr_fwd documentation, so it only shows the required stuff.
A full example can be reviewed here:

https://github.com/robe2/pgsql-ogr-fdw

https://github.com/robe2/pgsql-ogr-fdw

Importing Spatial Data

[40]

First let's create a foreign server:

CREATE SERVER fdw_wfs_test_opengeo
 FOREIGN DATA WRAPPER ogr_fdw
 OPTIONS (
 datasource 'WFS:http://demo.opengeo.org/geoserver/wfs',
 format 'WFS');

Automagically bring in the schema:

IMPORT FOREIGN SCHEMA "topp:tasmania_cities"
FROM SERVER fdw_wfs_test_opengeo INTO data_linked;

And issue a query against the foreign WFS table:

select city_name from data_linked.topp_tasmania_cities;

Since this dataset contains only one record, our result should be Hobart.

Loading rasters using raster2pgsql
raster2pgsql is the default tool for importing rasters to PostGIS. Even though GDAL
itself does not provide means to load rasters to the database, raster2pgsql is compiled as
a part of PostGIS and therefore supports the very same formats as the GDAL version
appropriate for given version of PostGIS.

raster2pgsql is a command-line tool. In order to review its parameters, simply type in the
console:

raster2pgsql

While taking a while to get familiar with the raster2pgsql help is an advised approach,
here are some params that worth highlighting:

-G: Prints a list of GDAL formats supported by the given version of the utility;
the list is likely to be extensive.
-s: Sets the SRID of the imported raster.
-t: Tile size - expressed as width x height. If not provided, a default is worked
out automatically in the range of 32-100 so it best matches the raster dimensions.
It is worth remembering that when importing multiple files, tiles will be
computed for the first raster and then applied to others.

Importing Spatial Data

[41]

-P: Pads tiles right / bottom, so all the tiles have the same dimensions.
-d|a|c|p: These options are mutually exclusive:

d: Drops and creates a table.
a: Appends data to an existing table.
c: Creates a new table.
p: Turns on prepare mode. So no importing is done; only a table is
created.

-F: A column with raster name will be added.
-l: Comma-separated overviews; creates overview tables named
o_<overview_factor>_raster_table_name.
-I: Creates GIST spatial index on the raster column.
-C: Sets the standard constraints on the raster column after the raster is imported.

For the examples used in this section, we'll use Natural Earth's 50M Gray Earth raster.

As you remember, ogr2ogr has a ogrinfo tool that can be used to obtain the information on
a vector dataset. GDAL's equivalent for raster files is called gdalinfo and is as worthy as
its vector brother:

gdalinfo GRAY_50M_SR_OB.tif

You should get a similar output:

Driver: GTiff/GeoTIFF
Files: GRAY_50M_SR_OB.tif
 GRAY_50M_SR_OB.tfw
Size is 10800, 5400
Coordinate System is:
GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4326"]]
Origin = (-179.999999999999970,90.000000000000000)
Pixel Size = (0.033333333333330,-0.033333333333330)
Metadata:
 AREA_OR_POINT=Area
 TIFFTAG_DATETIME=2014:10:18 09:28:20
 TIFFTAG_RESOLUTIONUNIT=2 (pixels/inch)
 TIFFTAG_SOFTWARE=Adobe Photoshop CC 2014 (Macintosh)

Importing Spatial Data

[42]

 TIFFTAG_XRESOLUTION=342.85699
 TIFFTAG_YRESOLUTION=342.85699
Image Structure Metadata:
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (-180.0000000, 90.0000000) (180d 0' 0.00"W, 90d 0' 0.00"N)
Lower Left (-180.0000000, -90.0000000) (180d 0' 0.00"W, 90d 0' 0.00"S)
Upper Right (180.0000000, 90.0000000) (180d 0' 0.00"E, 90d 0' 0.00"N)
Lower Right (180.0000000, -90.0000000) (180d 0' 0.00"E, 90d 0' 0.00"S)
Center (-0.0000000, 0.0000000) (0d 0' 0.00"W, 0d 0' 0.00"N)
Band 1 Block=10800x1 Type=Byte, ColorInterp=Gray

Before we get down to importing the raster, let's splits into four parts using gdalwarp
utility. This way, we'll be able to show how to import a single raster and a set of rasters:

gdalwarp -s_srs EPSG:4326 -t_srs EPSG:4326 -te -180 -90 0 0
GRAY_50M_SR_OB.tif gray_50m_partial_bl.tif
gdalwarp -s_srs EPSG:4326 -t_srs EPSG:4326 -te -180 0 0 90
GRAY_50M_SR_OB.tif gray_50m_partial_tl.tif
gdalwarp -s_srs EPSG:4326 -t_srs EPSG:4326 -te 0 -90 180 0
GRAY_50M_SR_OB.tif gray_50m_partial_br.tif
gdalwarp -s_srs EPSG:4326 -t_srs EPSG:4326 -te 0 0 180 90
GRAY_50M_SR_OB.tif gray_50m_partial_tr.tif

For each command, you should see a similar output:

Creating output file that is 5400P x 2700L.
Processing input file GRAY_50M_SR_OB.tif.
0...10...20...30...40...50...60...70...80...90...100 - done.

Having prepared the data, we can now move onto importing it.

Importing a single raster
In order to import a single raster file, let's issue the following command:

raster2pgsql -s 4326 -C -l 2,4 -I -F -t 2700x2700 gray_50m_sr_ob.tif
data_import.gray_50m_sr_ob | psql -h localhost -p 5434 -U postgres -d
mastering_postgis

Importing Spatial Data

[43]

You should see a similar output:

Processing 1/1: gray_50m_sr_ob.tif
BEGIN
CREATE TABLE
CREATE TABLE
CREATE TABLE
INSERT 0 1
(...)
INSERT 0 1
CREATE INDEX
ANALYZE
CREATE INDEX
ANALYZE
CREATE INDEX
ANALYZE
NOTICE: Adding SRID constraint
CONTEXT: PL/pgSQL function
addrasterconstraints(name,name,name,boolean,boolean,boolean,boolean,boolean
,boolean,boolean,boolean,boolean,boolean,boolean,boolean) line 53 at RETURN
NOTICE: Adding scale-X constraint
(...)

 t
(1 row)

 addoverviewconstraints

 t
(1 row)

 addoverviewconstraints

 t
(1 row)

COMMIT

The executed command created 3 tables: the main raster table
called data_import.gray_50m_sr_ob and two overview tables
called data_import.o_2_gray_50m_sr_ob and data_import.o_4_gray_50m_sr_ob.
The command also created the GIST index and brought in the filename. The raster has been
split into tiles of 2700 x 2700 pixels.

Importing Spatial Data

[44]

Importing multiple rasters
Let's import a directory of rasters now. We have four files with the file name mask
gray_50m_partial*.tif. In order to import all the files at once, we'll issue the following
command:

raster2pgsql -s 4326 -C -l 2,4 -I -F -t 2700x2700 gray_50m_partial*.tif
data_import.gray_50m_partial | psql -h localhost -p 5434 -U postgres -d
mastering_postgis

You should see a similar output:

Processing 1/4: gray_50m_partial_bl.tif
BEGIN
CREATE TABLE
CREATE TABLE
CREATE TABLE
INSERT 0 1
INSERT 0 1
INSERT 0 1
Processing 2/4: gray_50m_partial_br.tif
(...)
Processing 3/4: gray_50m_partial_tl.tif
(...)
Processing 4/4: gray_50m_partial_tr.tif
(...)
CONTEXT: PL/pgSQL function
addrasterconstraints(name,name,name,boolean,boolean,boolean,boolean,boolean
,boolean,boolean,boolean,boolean,boolean,boolean,boolean) line 53 at RETURN
NOTICE: Adding maximum extent constraint
CONTEXT: PL/pgSQL function
addrasterconstraints(name,name,name,boolean,boolean,boolean,boolean,boolean
,boolean,boolean,boolean,boolean,boolean,boolean,boolean) line 53 at RETURN
 addrasterconstraints

 t
(1 row)

 addoverviewconstraints

 t
(1 row)

 addoverviewconstraints

 t
(1 row)

Importing Spatial Data

[45]

COMMIT

The command used to import multiple rasters was very similar to the one we used to
import a single file. The difference was a filename mask used in place of a filename:
gray_50m_partial*.tif. If we had used a bit more griddy pattern such as *.tif, all the
TIF files present in a directory would be imported.

When processing multiple files, one can pipe the output to psql without the connection info
specified as psql params, but in such a case, equivalent environment variables will have to
be set (on Windows, use the set command, and on Linux, export):

set PGPORT=5434
set PGHOST=localhost
set PGUSER=postgres
set PGPASSWORD=somepass
set PGDATABASE=mastering_postgis
raster2pgsql -s 4326 -C -l 2,4 -I -F -t 2700x2700 gray_50m_partial*.tif
data_import.gray_50m_partial | psql

Importing data with pgrestore
Just to make the data import complete, it is worth mentioning the restore command. After
all, it is not very an uncommon scenario to receive some data in the form of a database,
schema, or even a single table backup.

For this scenario, let's create a backup of one of the tables imported before:

pg_dump -h localhost -p 5434 -U postgres -t
data_import.earthquakes_subset_with_geom -c -F c -v -b -f
earthquakes_subset_with_geom.backup mastering_postgis

Since there was a -v option specified, you should get a similarly verbose output:

pg_dump: reading schemas
pg_dump: reading user-defined tables
pg_dump: reading extensions
pg_dump: reading user-defined functions
pg_dump: reading user-defined types
pg_dump: reading procedural languages
pg_dump: reading user-defined aggregate functions
pg_dump: reading user-defined operators
pg_dump: reading user-defined operator classes
pg_dump: reading user-defined operator families
pg_dump: reading user-defined text search parsers
pg_dump: reading user-defined text search templates

Importing Spatial Data

[46]

pg_dump: reading user-defined text search dictionaries
pg_dump: reading user-defined text search configurations
pg_dump: reading user-defined foreign-data wrappers
pg_dump: reading user-defined foreign servers
pg_dump: reading default privileges
pg_dump: reading user-defined collations
pg_dump: reading user-defined conversions
pg_dump: reading type casts
pg_dump: reading transforms
pg_dump: reading table inheritance information
pg_dump: reading event triggers
pg_dump: finding extension members
pg_dump: finding inheritance relationships
pg_dump: reading column info for interesting tables
pg_dump: finding the columns and types of table
"data_import.earthquakes_subset_with_geom"
pg_dump: flagging inherited columns in subtables
pg_dump: reading indexes
pg_dump: reading constraints
pg_dump: reading triggers
pg_dump: reading rewrite rules
pg_dump: reading policies
pg_dump: reading row security enabled for table
"data_import.earthquakes_subset_with_geom"
pg_dump: reading policies for table
"data_import.earthquakes_subset_with_geom"
pg_dump: reading large objects
pg_dump: reading dependency data
pg_dump: saving encoding = UTF8
pg_dump: saving standard_conforming_strings = on
pg_dump: dumping contents of table
"data_import.earthquakes_subset_with_geom"

Having backed up our table, let's drop the original one:

DROP TABLE data_import.earthquakes_subset_with_geom;

And see if we can restore it:

pg_restore -h localhost -p 5434 -U postgres -v -d mastering_postgis
earthquakes_subset_with_geom.backup

Importing Spatial Data

[47]

You should see a similar output:

pg_restore: connecting to database for restore
pg_restore: creating TABLE "data_import.earthquakes_subset_with_geom"
pg_restore: processing data for table
"data_import.earthquakes_subset_with_geom"
pg_restore: setting owner and privileges for TABLE
"data_import.earthquakes_subset_with_geom"
pg_restore: setting owner and privileges for TABLE DATA
"data_import.earthquakes_subset_with_geom"

At this stage, we have successfully imported data by using the PostgreSQL backup / restore
facilities.

If you happen to get some errors on the pg_dump version, do make sure
you're using the one appropriate for the DB you are exporting from. You
can find it in the bin folder of the PostgreSQL directory.

Summary
There are many different ways of importing data into a PostGIS database. It is more than
likely that you will not have to use all of them all the time but rather have your preferred
ways of loading the data in your standard routines.

It is worth knowing different tools, though considered as different scenarios, may have to
be addressed with special care. When you add scripting to the stack (see the chapter on
ETL), you are equipped with some simple yet very powerful tools that may constitute a
decent ETL toolbox.

Having fed our database with data, next, we'll have a look at spatial data analysis and find
our way through a rich function set of PostGIS.

2
Spatial Data Analysis

So far, we have learned how to store geospatial data in a PostGIS database. In fact, any
database management system can do that; spatial information can be encoded and stored in
an ordinary DBMS-friendly format, be it blob, byte array, or text-based exchange format.
What makes the spatial database special (and the PostGIS extension worth installing) is the
rich toolset designed for analyzing, transforming, validating, querying, and extracting
metrics from spatial information. In this chapter, we will learn how to harness the power of
PostGIS spatial functions to gain meaningful insights from geodata. We will focus on the
following topics:

Composing and decomposing geometries
Spatial measurement
Geometry bounding boxes
Geometry simplification
Geometry validation
Intersecting geometries
Nearest feature queries

The example queries used in this chapter mostly use geometries created by hand, using
geometry composition functions. For a few examples, the OSM data in osm2pgsql schema
and Natural Earth data imported in Chapter 1, Importing Spatial Data, are used, but only the
column and table names are specific; the queries can be adjusted to any other dataset,
provided that the geometry type is the same.

Spatial Data Analysis

[49]

Composing and decomposing geometries
One can think of PostGIS geometries as building blocks. The smallest unit, the point,
consists of a tuple (in the most common scenario of 2D geometries, a pair) of coordinates.
Points can be then used as independent units or arranged into more complex shapes:
MultiPoints and LineStrings. LineStrings can constitute a MultiLineString. Closed
LineStrings can be treated as rings and form a Polygon. Finally, multiple polygons may
form a MultiPolygon. PostGIS is equipped with functions for coupling and decoupling
those geometric building blocks, which will be outlined in this section.

Composition and decomposition functions have different names, but in general they follow
a similar pattern: composition is done by supplying an array of components or using a
PostgreSQL aggregation, and decomposition is done by extracting individual components
by their index or by exploding a geometry into multiple rows using a set-returning
function. For details of each geometry type, read on.

Creating points
This is a very important function, since tabular data with coordinates stored in separate
columns is quite abundant. Examples include geocoded address lists, survey results, and
telemetry measurements. Such data can be converted to geometry using the ST_MakePoint
function:

SELECT ST_MakePoint(391390,5817855);

Given two numbers, it creates a point geometry. To make it clear what the location really is,
and make the created geometry suitable for spatial analysis, an SRID must be given. This
can be accomplished using a ST_SetSRID function. So the complete example will be:

SELECT ST_SetSRID(ST_MakePoint(391390,5817855),32633);

The number 32633 is an SRID for UTM coordinates zone 33 north, and in this case, the
coordinate pair 391390,5817855 denotes the Hallesches Tor in Berlin.

When the two dimensions aren't enough, a third argument can be added with a Z-
coordinate value:

SELECT ST_SetSRID(ST_MakePoint(334216.6,5077675.3,4810),32632);

This will output a 3D point geometry for Mont Blanc peak in the UTM zone 32 north
coordinate system.

Spatial Data Analysis

[50]

For geometries with both Z-coordinates and M-coordinates (M for measure, linear
referencing) there are third and fourth arguments, the fourth meaning M-value:

SELECT ST_SetSRID(ST_MakePoint(503612.6,5789004.9,89.5,4.408),32634);

This will output a 4D point geometry for Warsaw East train station, located at
503612.6,5789004.9 UTM 34N, 89.5 meters above mean sea level and 4.408 kilometers
from the beginning of the line at Central Station.

When a point has an M value but no Z, there is a special ST_MakePointM function:

SELECT ST_SetSRID(ST_MakePointM(503612.6,5789004.9,4.408),32634);

It takes three arguments: X, Y, and M values.

Extracting coordinates from points
Any coordinate (that is, an X, Y, Z or M value) can be extracted from a geometry into a
human-readable numeric format. The ST_X, SY_Y, and ST_Z functions are suited for that
purpose. For example, to extract the X and Y coordinates of POIs into separate numeric
columns, you can use the following:

SELECT id, name, ST_X(way) AS x_coord, ST_Y(way) as y_coord FROM
planet_osm_point LIMIT 10;

Composing and decomposing Multi-geometries
There are two functions designed for creating Multi-geometries:

The first one, ST_Multi, is used for converting a single geometry into a single-
part Multi-geometry:

 SELECT ST_AsText(ST_Multi(ST_MakePoint(391390,5817855)))
 MULTIPOINT((391390,5817855))

This is useful in situations where the database design enforces a uniform
geometry type across the whole table, and single geometries cannot be stored
alongside Multi-geometries.

To create a multi-part Multi-geometry, another function called ST_Collect
must be used.

Spatial Data Analysis

[51]

The simplest use case is to merge two single geometries into a single Multi-
geometry. For that, ST_Collect can accept two arguments of the geometry
type:

 SELECT
 ST_Collect(ST_MakePoint(20,50),ST_MakePoint(19.95,49.98));

For more complex MultiPoints, there are two possibilities. The first one is to
pass the PostgreSQL ARRAY of geometries as the argument to ST_Collect:

 SELECT
 ST_Collect(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.96)]);

The second option is to use ST_Collect as an aggregate function, just like SUM or
AVG are used for numbers. For example, to collect POI groups into MultiPoints,
you can do the following:

 SELECT amenity, ST_Collect(way) FROM planet_osm_point GROUP BY
 amenity;

When using ST_Collect as an aggregate, the standard rules of using
aggregate functions in PostgreSQL apply: All other columns must be used in
another aggregate (SUM, AVG, string_agg, array_agg, and so on) or in a
GROUP BY clause. Failure to do so will result in an error:

 SELECT tourism, amenity, ST_Collect(way) FROM planet_osm_point
 GROUP BY amenity;

 ERROR: column planet_osm_point.tourism must appear in the
 GROUP BY clause or be used in an aggregate function.

Multi-geometry decomposition
Multi-geometries can be broken down into single parts. There are two ways to do this.

The first is to extract components one part at a time, using the ST_GeometryN
function.

In computer programming in general, indexes are 0 based, so the first list
element will have an index of 0. In PostgreSQL, however, the convention
is different and indexes are 1 based. This means that the first element has
an index of 1.

Spatial Data Analysis

[52]

For example, extracting the second part from a MultiPoint created by hand
can be done using the following:

 SELECT
 ST_AsText(ST_GeometryN(ST_Collect(ARRAY[ST_MakePoint(20,50),
 ST_MakePoint(19.95,49.98), ST_MakePoint(19.90,49.96)]),2));

 st_astext

 POINT(19.95 49.98)

The number of Multi-geometry parts can be revealed using the
ST_NumGeometries function:

 SELECT
 ST_NumGeometries(ST_Collect(ARRAY(ST_MakePoint(20,50),
 ST_MakePoint(19.95,49.98), ST_MakePoint(19.90,49.96))));

 3

The second option is to expand a Multi-geometry into a set of rows using the
ST_Dump function. This returns a special compound type, called geometry dump.
The geometry dump type consists of two parts: the path, which denotes the
position of a component within the Multi-geometry, and the geom being the
actual component geometry:

 SELECT
 ST_Dump(ST_Collect(ARRAY[ST_MakePoint(20,50),
 ST_MakePoint(19.95,49.98), ST_MakePoint(19.90,49.96)]));

This will result in the following:

 st_dump
 --
 ({1},010100000000000000000034400000000000004940)
 ({2},01010000003333333333F333403D0AD7A370FD4840)
 ({3},01010000006666666666E633407B14AE47E1FA4840)
 (3 rows)

To extract actual geometries from the geometry dump, the ST_Dump function
should be wrapped in parentheses, and its geom part referenced:

 SELECT
 (ST_Dump(ST_Collect(ARRAY[ST_MakePoint(20,50),
 ST_MakePoint(19.95,49.98), ST_MakePoint(19.90,49.96)]))).geom;
 geom
 --

Spatial Data Analysis

[53]

 010100000000000000000034400000000000004940
 01010000003333333333F333403D0AD7A370FD4840
 01010000006666666666E633407B14AE47E1FA4840

Now each of the MultiPoint's components are accessible as a single-part
geometry, which can be inserted into another table or used in another
function.

Composing and decomposing LineStrings
LineStrings are ordered collections of points used for representing linear spatial features
such as roads, railways, rivers, or power lines. PostGIS has functions for creating them,
given a set of points, and decomposing them into sets of points.

LineString composition
The rules for composing LineStrings are similar to those governing MultiPoint composition:
Two points, an array of points, or a set of aggregated rows can be supplied. The PostGIS
function designed for creating LineStrings is called ST_MakeLine. Point geometries
required for composition can be already stored in a table, or created from raw coordinates
using the ST_MakePoint function.

The following example will create a straight line connecting two points:

SELECT ST_MakeLine(ST_MakePoint(20,50),ST_MakePoint(19.95,49.98));

When using raw coordinates, the output geometry will have an unknown SRID, so the
complete example will be as follows:

SELECT
ST_SetSRID(ST_MakeLine(ST_MakePoint(20,50),ST_MakePoint(19.95,49.98)),4326)
;

For three or more points and raw coordinates, the ARRAY argument can be used:

SELECT ST_MakeLine(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
ST_MakePoint(19.90,49.96)]);

And finally, the aggregate variant. This is especially useful when dealing with a series of
points from GPS tracking devices:

SELECT ST_MakeLine(gpx.geom ORDER BY time) AS geom
FROM gpx
GROUP BY 1;

Spatial Data Analysis

[54]

A set of GPS measurement points.

The image we just saw contains a visualization of discrete GPS points. Each one has a time
attribute that can be used for sorting, so a LineString can be composed without issues.

In the next step, the sorted points are composed into a single geometry of the LineString
type:

A LineString created from a set of points.

Spatial Data Analysis

[55]

The GROUP BY 1 is used to aggregate all rows in a table (if a table consists of multiple
tracks and they have a unique ID, a real column with this ID should be used instead), and
the ORDER BY timestamp clause ensures the correct order of points to create a valid line.

LineString decomposition
This process is also similar to MultiPoint decomposition. The points can be extracted one at
a time or dumped into a geometry dump. Aside from these generic methods, there are also
special functions for finding the start or end point of a line.

First, let's find the count of the vertices in a LineString. A generic ST_NPoints1.
function can be used for that:

 SELECT
 ST_NPoints(ST_MakeLine(ST_MakePoint(20,50),
 ST_MakePoint(19.95,49.98)));

 2

The ST_NPoints works for any geometry type--not just for LineStrings,
but also LinearRings, polygons, their multi-variants, and even for points,
in which case it will return 1. There is also a ST_NumPoints function,
which works for LineStrings only.

The individual points are extracted from a LineString by the ST_PointN
function, which is not unlike ST_GeometryN used for Multi-geometry
decomposition.

 SELECT
 ST_AsText(ST_PointN(ST_MakeLine(ARRAY[
 ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.96)]),2));

 POINT(19.95 49.98)

Dumping the points into a set of rows is also similar to dumping a Multi-2.
geometry. The only difference is that the function used is named
ST_DumpPoints. The geometry dump compound type is a direct output from
this function:

 SELECT
 ST_DumpPoints(ST_MakeLine(ARRAY[
 ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.96)]));

Spatial Data Analysis

[56]

 st_dumppoints
 --
 ({1},010100000000000000000034400000000000004940)
 ({2},01010000003333333333F333403D0AD7A370FD4840)
 ({3},01010000006666666666E633407B14AE47E1FA4840)

And for accessing the vertices' geometry, we can do the following:3.

 SELECT
 (ST_DumpPoints(ST_MakeLine(ARRAY[
 ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.96)]))).geom;
 geom
 --
 010100000000000000000034400000000000004940
 01010000003333333333F333403D0AD7A370FD4840
 01010000006666666666E633407B14AE47E1FA4840

Finally, there are specialized methods for finding the first and last vertices of4.
LineStrings. They are named ST_StartPoint and ST_EndPoint:

 SELECT
 ST_AsText(ST_StartPoint(ST_MakeLine(ARRAY[
 ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.96)])));

 POINT(20 50)

 SELECT
 ST_AsText(ST_EndPoint(ST_MakeLine(ARRAY[
 ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.96)])));

 POINT(19.9 49.96)

Composing and decomposing polygons
Polygons in PostGIS are made of rings. A ring is a closed LineString-that is, the first and last
point have the same coordinates. A polygon must have only one outline (also called a shell,
or exterior ring) and can have zero or more interior rings (holes), which must be contained
within the outer ring. The winding order of vertices is irrelevant (in contrast to some other
GIS formats, most notably the Shapefile format). This means that if a polygon feature has
more than one exterior ring, it must be saved as a MultiPolygon.

Spatial Data Analysis

[57]

Polygon composition
A function for composing polygons is not-so-surprisingly named ST_MakePolygon. For a
solid polygon without holes, it accepts one argument-a closed LineString.

For example, a triangle-shaped polygon can be created using the following query:1.

 SELECT
 ST_MakePolygon(ST_MakeLine(ARRAY[ST_MakePoint(20,50),
 ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.90),ST_MakePoint(20,50)]));

An attempt to create a polygon from fewer than four points will result in an error:2.

 SELECT
 ST_MakePolygon(ST_MakeLine(ARRAY[ST_MakePoint(20,50),
 ST_MakePoint(19.95,49.98), ST_MakePoint(19.90,49.96)]));
 ERROR: lwpoly_from_lwlines: shell must have at least 4 points

And if a ring is not closed:

 SELECT
 ST_MakePolygon(ST_MakeLine(ARRAY[ST_MakePoint(20,50),
 ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.96),ST_MakePoint(20,50),
 ST_MakePoint(20.01,50.01)]));
 ERROR: lwpoly_from_lwlines: shell must be closed

When creating simple shapes using coordinates typed by hand, it's rather
obvious if a ring is closed or not. But what if there are hundreds or thousands
of vertices? Luckily, PostGIS has a function for finding out whether a
LineString is closed or not--it's called ST_IsClosed:

 SELECT
 ST_IsClosed(ST_MakeLine(ARRAY[ST_MakePoint(20,50),
 ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.96),ST_MakePoint(20,50),
 ST_MakePoint(20.01,50.01)]));
 st_isclosed

 f

 SELECT
 ST_IsClosed(ST_MakeLine(ARRAY[ST_MakePoint(20,50),
 ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.96),ST_MakePoint(20,50),
 ST_MakePoint(20,50)]));

Spatial Data Analysis

[58]

 st_isclosed

 t

When using Boolean-returning functions in the PostgreSQL console, f
stands for false, and t for true.

PostGIS can also snap the ends of a ring to create a polygon from an unclosed
LineString. Just replace ST_MakePolygon with ST_Polygonize:

 SELECT
 ST_Polygonize(ST_MakeLine(ARRAY[ST_MakePoint(20,50),
 ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.96),ST_MakePoint(20,50),
 ST_MakePoint(20.01,50.01)]));
 st_polygonize

 010700000000000000
 (1 row)

Beware though--this is an automated process, and for some shapes it can lead
to undesirable effects, like weirdly-shaped MultiPolygons.

For constructing a polygon with holes, the interior ring(s) should be supplied as3.
an ARRAY:

 SELECT ST_MakePolygon(
 ST_MakeLine(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.90),ST_MakePoint(20,50)]),
 ARRAY[ST_MakeLine(ARRAY[ST_MakePoint(19.95,49.97),ST_MakePoint
 (19.943,49.963),
 ST_MakePoint(19.955,49.965),ST_MakePoint(19.95,49.97)])]
);

Spatial Data Analysis

[59]

An example polygon with exterior and interior rings created with ST_MakePolygon.

Polygon decomposition
There are two levels of polygon geometry decomposition: they can be broken down either
into LineStrings or into points. Decomposition into points is very similar to decomposition
of a LineString: the ST_DumpPoints is used:

 SELECT ST_DumpPoints(
 ST_MakePolygon(
 ST_MakeLine(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
ST_MakePoint(19.90,49.90),ST_MakePoint(20,50)]),
ARRAY[ST_MakeLine(ARRAY[ST_MakePoint(19.95,49.97),ST_MakePoint(19.943,49.96
3), ST_MakePoint(19.955,49.965),ST_MakePoint(19.95,49.97)])]
)
);

 st_dumppoints
--
 ("{1,1}",010100000000000000000034400000000000004940)
 ("{1,2}",01010000003333333333F333403D0AD7A370FD4840)
 ("{1,3}",01010000006666666666E633403333333333F34840)
 ("{1,4}",010100000000000000000034400000000000004940)
 ("{2,1}",01010000003333333333F333405C8FC2F528FC4840)
 ("{2,2}",0101000000C520B07268F133402506819543FB4840)
 ("{2,3}",010100000014AE47E17AF43340EC51B81E85FB4840)
 ("{2,4}",01010000003333333333F333405C8FC2F528FC4840)

Spatial Data Analysis

[60]

There's a slight difference in the geometry dump format: the path array now consists of two
numbers. The first one is the index of the ring (1 being the exterior ring, and the following
numbers the subsequent interior rings), and the second is the index a of point in the ring.

For extracting whole rings, PostGIS offers the following possibilities:

Dumping the rings into a set of rows. For that, ST_DumpRings is used:

 SELECT ST_DumpRings(
 ST_MakePolygon(
 ST_MakeLine(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.90),ST_MakePoint(20,50)]),

 ARRAY[ST_MakeLine(ARRAY[ST_MakePoint(19.95,49.97),ST_MakePoint
 (19.943,49.963),
 ST_MakePoint(19.955,49.965),ST_MakePoint(19.95,49.97)])]
)
);

 st_dumprings

 ({1},01030000000100000004000000(...)

Extracting the exterior ring:

 SELECT ST_ExteriorRing(
 ST_MakePolygon(
 ST_MakeLine(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.90),ST_MakePoint(20,50)]),

 ARRAY[ST_MakeLine(ARRAY[ST_MakePoint(19.95,49.97),
 ST_MakePoint(19.943,49.963),ST_MakePoint(19.955,49.965),
 ST_MakePoint(19.95,49.97)])]
)
);

 st_exteriorring

 01020000000400000000(...)

Spatial Data Analysis

[61]

Extracting the interior rings based on their index:

 SELECT ST_InteriorRingN(
 ST_MakePolygon(
 ST_MakeLine(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
 ST_MakePoint(19.90,49.90),ST_MakePoint(20,50)]),

 ARRAY[ST_MakeLine(ARRAY[ST_MakePoint(19.95,49.97),
 ST_MakePoint(19.943,49.963),
 ST_MakePoint(19.955,49.965),ST_MakePoint(19.95,49.97)])]
), 1
);

 st_interiorringn

 010200000004000000333(...)

Interior ring extracted from a polygon.

Spatial Data Analysis

[62]

Spatial measurement
Before the advent of GIS, spatial measurement was quite a tedious task. On printed (or
drawn) maps, this usually meant aligning a piece of string or wire on a map carefully and
then measuring it with a ruler. Another possibility was to use a specialized tool, called an
opisometer (curvimeter). The whole process was error prone and subject to a number of
factors, including the stretching or shrinking of the map material. For surveyed coordinates,
measurement meant doing lots of math. Things were even worse for geodesic (latitude-
longitude) coordinates, where complicated formulas had to be used.

Now, with spatial databases, it's possible to get spatial measurements in milliseconds. This
doesn't mean that one can blindly push the button, though. The details will be explained in
this section.

General warning - mind the SRID!
Measurement functions come in two variants: planimetric and geodesic. The former operate
on a flat surface, while the latter operate on a curved surface (sphere or spheroid).
Planimetric functions are robust and computationally cheap (and thus fast to execute), but
will yield accurate results if and only if the data is stored in a suitable Cartesian coordinate
system. Examples include UTM, State Plane for the US, National Grid for the US and UK,
DHDN for Germany, PUWG for Poland, S-JTSK for the Czech Republic, and so on.
Geodesic functions, on the other hand, are suited for latitude-longitude coordinates, and
consume more resources because of their more complicated formulas, but they work
globally.

Trying to use planimetric functions on geodesic coordinates will not result in an error or
warning, but will give meaningless results instead. For instance, the distance between
Brasilia and Rio de Janeiro in Brazil or Kristiansand in Norway and Espoo in Finland is
about 990 kilometers, but 9.1 decimal degrees in the first case and 16.79 decimal degrees in
the second. This is because Earth is not flat, and the meridians converge towards the poles.
The distance between two meridians is not uniform across the globe, so decimal degrees
cannot be used as a reliable unit of measurement.

Spatial Data Analysis

[63]

Attention should be paid to global flat coordinate systems, too. Web Mercator is probably
the most notable example, as databases used primarily for web map tile rendering use it.
Using planimetric measures in this coordinate system will result in exaggerated results--the
closer to the poles, the bigger the distortion. For example, the area of Spain calculated using
geodesic function is 507,000 square kilometers, but with Web Mercator it is 873,000 square
kilometers (72 percent bigger), and the measurement of Sweden's area is 446,000 square
kilometers with the geodesic function and more than 2 million square kilometers with Web
Mercator (480 percent distortion!).

Measuring distances between two geometries
In order to measure the distance between two geometries, the ST_Distance function
should be used. It accepts two arguments of the geometry (or geography) type, and when
using the more common geometry type, it returns a floating point number indicating the
distance in the same units as the geometries' SRID. So for UTM the result will be given in
meters, for State Plane in feet, and for WGS84 in decimal degrees (which, as I mentioned
before, is plainly useless). Both geometries need to have the same SRID or an error will be
thrown. For example, we can use the following to calculate the distance between Potsdam
and Berlin:

SELECT ST_Distance(
 ST_SetSRID(ST_MakePoint(367201,5817855),32633),
 ST_SetSRID(ST_MakePoint(391390,5807271),32633)
)

 st_distance

 26403.1963405948

But what if the geometries are in a latitude-longitude coordinate system? This is where
geodesic measurement comes into play. When the features are in the geography type, all the
user has to do is nothing; PostGIS will calculate a geodesic length and return the result in
meters. If the geometry type is used, it can be cast to geography:

SELECT
ST_Distance(ST_MakePoint(20,50)::geography,ST_MakePoint(21,51)::geography);

Spatial Data Analysis

[64]

On modern hardware, this will run fast despite the complexity of math involved. But for
large number of features it can slow down things anyway. When time and/or processing
power is at a premium, and accuracy can be sacrificed - ,PostGIS allows for using a simpler
Earth model, a sphere instead of spheroid. For this, an optional second argument
use_spheroid = FALSE has to be supplied. As you might remember from geography
class, the Earth is not a perfect sphere, but it's slightly flattened. When using a spherical
model for calculation, the accuracy of measurement will decrease. Decreased by how much,
you ask? This depends on the latitude and distance between features, but here are some
examples.

For two landmarks in Berlin, the spheroidal distance is 2157.5 meters and the spherical
distance is 2155 meters--a 0.116 percent difference.

For the cities of Brasilia and Rio de Janeiro in Brazil, the spheroidal distance is 988.02
kilometers and the spherical distance is 990.31 kilometers--a 0.232 percent difference.

For the terminal stations of the Trans-Siberian Railway, Moscow and Vladivostok, the
spheroidal distance is 6430.7 kilometers and the spherical distance is 6412 kilometers - a 0.44
percent difference.

The query will look like this:

SELECT
ST_Distance(ST_MakePoint(20,50)::geography,ST_MakePoint(21,51)::geography,
FALSE);

The speedup for simple points is about 10 percent, but it will be bigger as the geometries
become more complex.

Before the introduction of the geography type, specialized functions
named ST_DistanceSphere and ST_DistanceSpheroid had to be used
for latitude-longitude coordinates.

Measuring the length, area, and perimeter of
geometries
PostGIS can not only measure distances between geometries, but also the dimensions of line
and polygon geometries.

Spatial Data Analysis

[65]

Line length
For lines, the length is calculated by the ST_Length function. It takes one argument, the
input geometry, which can be a LineString or MultiLineString. When the argument is of the
geometry type, the planimetric calculation will take place and the output length will be
given in units of the input geometry's coordinate system.

Here is an example of a three-point LineString:

 SELECT ST_Length(
ST_MakeLine(ARRAY[ST_MakePoint(391390,5817855),ST_MakePoint(391490,5817955)
, ST_MakePoint(391590,5818055)])
);

 st_length

 282.842712474619

For latitude-longitude coordinates, either the geography type, a type cast, or a
ST_Length_Spheroid function should be used. Here is an example of a type cast being
used:

 SELECT ST_Length(
 ST_MakeLine(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
ST_MakePoint(19.90,49.96)])::geography
);

 st_length

 8440.40084752485

The result will be given in meters.

For polygons, perimeter and area calculations are available.

Polygon perimeter
The perimeter is computed using the ST_Perimeter function. Its usage is identical to
ST_Length, the only difference being that the argument must be a polygon or
MultiPolygon:

SELECT ST_Perimeter(ST_GeomFromText('POLYGON((391390 5817855,391490
5817955,391590 5818055, 319590 5817855,391390 5817855))', 32633))

 st_perimeter

Spatial Data Analysis

[66]

 144083.120489717

Again, for latitude-longitude coordinates, the geography type should be used. Please note
that in contrast to distance and length computations, there's no specialized function for the
geodesic calculation of the perimeter of latitude-longitude geometry. Here is an example,
using the triangle from previous section:

 SELECT ST_Perimeter(
ST_MakePolygon(ST_MakeLine(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.
98), ST_MakePoint(19.90,49.90),ST_MakePoint(20,50)]))::geography
);

 st_perimeter

 27051.7310753665

When a polygon has holes, the perimeter of the interior rings will be added to the exterior
rings' perimeter:

 SELECT ST_Perimeter(ST_MakePolygon(
 ST_MakeLine(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
ST_MakePoint(19.90,49.90),ST_MakePoint(20,50)]),
ARRAY[ST_MakeLine(ARRAY[ST_MakePoint(19.95,49.97),ST_MakePoint(19.943,49.96
3), ST_MakePoint(19.955,49.965),ST_MakePoint(19.95,49.97)])]
)::geography);

 st_perimeter

 29529.3133397193

Polygon area
The area of a polygon or MultiPolygon geometry is computed with the ST_Area function.
The same rules that we used with the perimeter calculations apply: when the argument is of
the geometry type, the planimetric variant will be used, and with the geography type, the
geodesic variant will be used:

SELECT ST_Area(ST_GeomFromText('POLYGON((391390 5817855,391490
5817955,391590 5818055, 319590 5817855,391390 5817855))', 32633));
 st_area

 7180000

Spatial Data Analysis

[67]

The argument is of the geometry type, and the SRID is 32633, which leads us to UTM 33N.
The result is given in square meters:

 SELECT ST_Area(
ST_MakePolygon(ST_MakeLine(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.
98), ST_MakePoint(19.90,49.90),ST_MakePoint(20,50)]))::geography
);

 st_area

 11949254.7990036

The argument is of the geography type, so the result will be computed geodesically with the
units as square meters.

Finally, for polygons with holes, the interior rings' area is subtracted from the exterior rings'
area:

 SELECT ST_Area(ST_MakePolygon(
 ST_MakeLine(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.98),
ST_MakePoint(19.90,49.90),ST_MakePoint(20,50)]),
ARRAY[ST_MakeLine(ARRAY[ST_MakePoint(19.95,49.97),ST_MakePoint(19.943,49.96
3), ST_MakePoint(19.955,49.965),ST_MakePoint(19.95,49.97)])]
)::geography);

 st_area

 11669942.4506721

Geometry bounding boxes
A bounding box, often abbreviated into BBOX, is a list of the extreme coordinates of a
geometry. Bounding boxes play a big role in spatial queries, as they allow for fast coarse
computations; If two geometries' BBOXes do not intersect, there's no point in wasting CPU
cycles for intersecting them precisely. In PostGIS, bounding boxes are computed and cached
internally. There are specialized data types for bounding boxes: box2d, which can be
visualized as a rectangle, and box3d, which forms, well, a box.

Spatial Data Analysis

[68]

Accessing bounding boxes
A bounding box of a geometry can be accessed in two ways. The first is to create a Box2D
type from a geometry (or a set of them):

SELECT ST_Extent(
ST_GeomFromText('POLYGON((391390 5817855,391490 5817955,391590 5818055,
319590 5817855,391390 5817855))', 32633)
);
 st_extent

 BOX(319590 5817855,391590 5818055)

Then to create one for a set of geometries:

SELECT ST_Extent(geom) FROM sometable;

ST_Extent is an aggregate function, so the usual rules of using the GROUP BY clause apply.

The second method is to access individual BBOX elements separately. For that, ST_XMin,
ST_YMin, ST_XMax, and ST_YMax (and ST_ZMax for 3D geometries) are provided:

SELECT ST_XMin(
ST_GeomFromText('POLYGON((391390 5817855,391490 5817955,391590 5818055,
319590 5817855,391390 5817855))', 32633)
);

 st_xmin

 319590

For geometries already stored in a table, we can use the following:

SELECT ST_XMin(geom), ST_YMin(geom), ST_XMax(geom), ST_YMax(geom) FROM
sometable;

This function is not an aggregate, so for computing individual extreme coordinates for sets
of geometries, they need to be aggregated first using the ST_Collect function that we
learned about before.

Spatial Data Analysis

[69]

Creating bounding boxes
Like regular geometries, a bounding box can be created from its textual representation:

SELECT 'BOX(319590 5817855,391590 5818055)'::box2d;

It can also be created using a function, ST_MakeBox2D, which accepts two points:

SELECT ST_MakeBox2D(
 ST_MakePoint(319590,5817855),
 ST_MakePoint(391590,5818055)
);

The first argument is a lower-left point, with coordinates of (minX,minY), and the second
is an upper-right point, with coordinates of (maxX,maxY).

Using bounding boxes in spatial queries
The ability to create a bounding box is useful for doing filter by BBOX queries. The
coordinate systems of the data and the BBOX must match, so any BBOX creation function
must be wrapped in the ST_SetSRID function. For that kind of query, the && operator,
meaning intersects BBOX, is used. For example:

SELECT * FROM planet_osm_point WHERE way && ST_SetSRID('BOX(-500
6705000,1000 6706000)'::box2d,900913);

This will return all the rows from the planet_osm_point table whose geometries fall
completely or partially inside the defined BBOX. Note that this returns the complete
geometries that share even the tiniest part with a BBOX. Clipping geometries to BBOX will
be discussed in the next chapter.

Geometry simplification
In surveying, we strive for the highest accuracy and precision possible. However, this is not
always the case in mapmaking. Too-detailed geometries on small scale (zoomed-out) maps
are bad for human perception; edges or lines appear jagged, and cause an unnecessary
burden on the computer in trying to render them. For that reason, cartographers generalize
the geometries used for mapmaking. There are a few algorithms designed for automated
generalization. PostGIS provides an implementation of a widely used Douglas-Peucker
algorithm in a ST_Simplify function.

Spatial Data Analysis

[70]

The function accepts two arguments, the first being a geometry to be simplified, and the
second being a tolerance parameter defining how aggressive the simplification can be.
Tolerance is given in the same units as the geometry's coordinate system, and the bigger it
is, the more simplified the output geometry becomes.

Here are some examples of simplification:

River meanders simplified with 50 (green) and 100 (red) meter tolerance. The original geometry is blue.

The problem with the ST_Simplify function is that it can break geometries that introduce
self-intersections, for example (more on geometry validity in the next section). To address
this, a safer variant called ST_SimplifyPreserveTopology was introduced. This function
will do its best to avoid creating invalid geometries.

Spatial Data Analysis

[71]

Please note that this function maintains topology within single rows only. It can--and it
will--break topological relationships between adjacent geometries, for example, land parcels
or river networks:

Aggressively simplified postcode polygons that have retained validity, but lost their topological relationships.

This is because the Simple Features model, which PostGIS uses, does not store any
information about topological relationships between features. If topological correctness is
required, the features should be stored in a PostGIS topology format (which is discussed in
Chapter 8, PostGIS Topology) instead.

Geometry validation
Invalid geometries are a spatial analyst's nightmare. They can appear in any dataset, and
can break a carefully-designed, long-running query in the middle of execution. Or even
worse, a failing query might break an application's functionality. Luckily, PostGIS is
equipped with the tools to find and repair them.

Spatial Data Analysis

[72]

Simplicity and validity
In PostGIS, there are two concepts: simplicity and validity. For most spatial analyses to
succeed, input geometries have to be both simple and valid. Here are some rules:

A point must always be simple and valid
A MultiPoint must always be valid, and simple when there are no repeated
points with identical coordinates
A LineString or MultiLineString must always be valid, and is simple if the line:

Does not have repeated points (with the exception of closed rings,
whose first and last point are identical)
Does not self-intersect

Example of a non-simple line: self-intersecting autogenerated contours.

Spatial Data Analysis

[73]

A polygon is always simple, and is valid if:

All interior rings (if any) are properly contained within the exterior ring
No rings cross
The exterior ring doesn't have any spikes (bayonets)

An example of an invalid polygon: self-intersecting ring.

A MultiPolygon is valid when all parts are valid and the exterior rings of all parts do not
intersect.

Testing for simplicity and validity
Testing geometries for simplicity is done by the ST_IsSimple function. It accepts a
geometry and returns a Boolean indicating whether a given geometry is simple. For
example, a simple line looks like the following:

 SELECT
ST_IsSimple(ST_MakeLine(ST_MakePoint(20,50),ST_MakePoint(19.95,49.98)));

 st_issimple

 t

Spatial Data Analysis

[74]

The next line has a repeated point:

 SELECT
ST_IsSimple(ST_MakeLine(ARRAY[ST_MakePoint(20,50),ST_MakePoint(19.95,49.98)
,ST_MakePoint(19.90,49.90), ST_MakePoint(19.95,49.98)]));

 st_issimple

 f

So the ST_IsSimple function returns FALSE.

For geometries stored in a table, the following syntax can be used to show the non-simple
ones:

SELECT * FROM planet_osm_line WHERE ST_IsSimple(way) = FALSE;

Checking for validity
There are three PostGIS functions for checking validity. The first one is the ST_IsValid
function. It behaves exactly like ST_IsSimple: it accepts a geometry and returns a Boolean
indicating whether the input is valid or not.

SELECT * FROM data_import.ne_110m_land WHERE ST_IsValid(geom) = FALSE;

But what's exactly wrong with returned geometries? PostGIS can return the details of a
validity check. Those can be returned in two variants: as a human readable summary or a
compound type that includes the summary and location in geometry format. The first
variant is named ST_IsValidReason:

SELECT ST_IsValidReason(geom) FROM data_import.ne_110m_land WHERE
ST_IsValid(geom) = FALSE;

It returns a summary of test results:

 st_isvalidreason
--
 Ring Self-intersection[-132.710007884431 54.0400093154234]

The second variant is named ST_IsValidDetail, and returns a valid_detail compound
type (similar to a geometry dump) containing three fields:

valid, of a Boolean type, indicating whether the geometry is valid
reason, of a text type, indicating the reason for its invalidity (if any)

Spatial Data Analysis

[75]

location, of a geometry type, indicating the location at which the error was
encountered

This variant is useful when making validation reports.

For example:

 SELECT ST_IsValidDetail(geom) FROM data_import.ne_110m_land WHERE
ST_IsValid(geom) = FALSE;
NOTICE: Ring Self-intersection at or near point -132.71000788443121
54.040009315423447
 st_isvaliddetail

 (f,"Ring Self-intersection",010100000018717462B89660C0B8A376061F054B40)

The following is used to explode it into separate columns:

SELECT (ST_IsValidDetail(geom)).location, (ST_IsValidDetail(geom)).reason
FROM data_import.ne_110m_land WHERE ST_IsValid(geom) = FALSE;

NOTICE: Ring Self-intersection at or near point -132.71000788443121
54.040009315423447
 location | reason
--+------------------------
 010100000018717462B89660C0B8A376061F054B40 | Ring Self-intersection

Repairing geometry errors
PostGIS can try to fix validity errors automatically. A ST_MakeValid function is designed
for this. It's convenient to use, but it's not a magic wand; if a geometry is an hourglass-
shaped polygon, it will remain so, only converted to a MultiPolygon to ensure formal
validity. Sometimes it's better to extract invalid geometries and have a closer look at them
using desktop GIS software. When this is not practical, ST_MakeValid can be used as a
quick remedy:

UPDATE data_import.ne_110m_land SET geom = ST_MakeValid(geom);

The ST_MakeValid will not touch geometries that are already valid, so an additional WHERE
clause is not needed.

Now, look at the following query:

SELECT * FROM data_import.ne_110m_land WHERE ST_IsValid(geom) = FALSE;

Spatial Data Analysis

[76]

This query should return 0 rows.

There is also a hacky way for making geometries valid:

UPDATE data_import.ne_110m_land SET geom = ST_Buffer(geom,0) WHERE
ST_IsValid(geom) = FALSE;

Validity constraint
When the ability to run spatial queries is mission critical (for example, in a web application),
it's wise to put a CHECK constraint on a geometry column. This will ensure that no invalid
geometries will make their way into the database, so users won't be surprised by a failing
query. On the other hand, an INSERT or UPDATE query with invalid geometry will fail, so
this has to be correctly handled.

The constraint is created after all geometries are made valid (or no geometries have been
inserted yet), using a query like this:

ALTER TABLE planet_osm_polygon ADD CONSTRAINT enforce_validity CHECK
(ST_IsValid(way));

Intersecting geometries
In PostGIS, there are two ways in which geometries can be intersected. The first way is
checking whether two geometries intersect (at least one point of geometry A lies within the
interior of geometry B). That's the ST_Intersects function. It accepts two arguments of
the geometry type, and returns a Boolean.

For example, these lines intersect:

 SELECT ST_Intersects(
 ST_MakeLine(ST_MakePoint(20,50),ST_MakePoint(21,51)),
 ST_MakeLine(ST_MakePoint(20.5,50.5), ST_MakePoint(22,52))
);

But these lines don't:

 st_intersects

 t

SELECT ST_Intersects(
 ST_MakeLine(ST_MakePoint(20,50),ST_MakePoint(21,51)),

Spatial Data Analysis

[77]

 ST_MakeLine(ST_MakePoint(21.5,51.5), ST_MakePoint(22,52))
);

 st_intersects

 f

ST_Intersects can also be used for table joining. The following query will return land
features that had at least one earthquake:

SELECT ne_110m_land.* FROM data_import.ne_110m_land JOIN
data_import.earthquakes_subset_with_geom ON
ST_Intersects(ne_110m_land.geom, earthquakes_subset_with_geom.geom);

The second way of intersecting features is by using the ST_Intersection function.
Despite its similar name, it does a different job: it accepts two arguments of the geometry
type, and returns a geometry containing the portion shared by those two features.

For example, let's compute an intersection of the British coastline with an arbitrary polygon:

 SELECT gid,ST_Intersection(geom,
 ST_SetSRID('POLYGON((-2 53, 2 53, 2 50, -2 50, -2 53))'::geometry,4326)
) FROM data_import.ne_coastline WHERE gid = 73;

A LineString clipped with a polygon using the ST_Intersection function.

Spatial Data Analysis

[78]

Nearest feature queries
This is a key feature for almost any location-based application: given a current location, it
will return the nearest feature (or list of nearest features, ordered by distance).

The naive approach to this problem would be to query the table ordering by ST_Distance.
Let's find the five earthquakes closest to San Juan:

 SELECT * FROM data_import.earthquakes_subset_with_geom
ORDER BY ST_Distance(geom::geography,
ST_SetSRID(ST_MakePoint(-66.11,18.46),4326)::geography)
LIMIT 5;

 id | time | depth | mag | magtype
| place
| geom
------------+--------------------------+-------+-----+---------+-----------
--+----------------------------------

 pr16281009 | 2016-10-08 01:08:46.4+02 | 5 | 2.5 | Md | 28km SE of
El Negro, Puerto Rico |
0101000020E610000062A1D634EF6850C0E561A1D634DF3140
 pr16281009 | 2016-10-08 01:08:46.4+02 | 5 | 2.5 | Md | 28km SE of
El Negro, Puerto Rico |
0101000020E610000062A1D634EF6850C0E561A1D634DF3140
 pr16282000 | 2016-10-08 04:40:43.2+02 | 6 | 2.6 | Md | 14km SSE
of Tallaboa, Puerto Rico |
0101000020E610000044696FF085A950C0FF21FDF675E03140
 pr16282000 | 2016-10-08 04:40:43.2+02 | 6 | 2.6 | Md | 14km SSE
of Tallaboa, Puerto Rico |
0101000020E610000044696FF085A950C0FF21FDF675E03140
 pr16282001 | 2016-10-08 11:27:19.6+02 | 27 | 2.9 | Md | 28km NNW
of Charlotte Amalie, U.S. Virgin Islands |
0101000020E6100000DAACFA5C6D4150C0857CD0B359953240

The data is in the WGS84 latitude-longitude coordinate system, so
geometry must be cast to geography to get accurate results, as explained in
the Spatial measurement section.

Spatial Data Analysis

[79]

This is fast for a table with 50 rows, but what if we'd like to reverse geocode (find the
nearest address) given a pair of coordinates and an os_address_base_gml table?

SELECT * FROM data_import.os_address_base_gml
ORDER BY ST_Distance(wkb_geometry::geography,
ST_SetSRID(ST_MakePoint(-3.5504,50.7220),4258)::geography)
LIMIT 1;

This will require a lot of geodesic calculations, as the ST_Distance function cannot use a
spatial index.

To make things better, a <-> operator can be used to make indexed K-nearest feature
searches. First, let's change the data type of the os_address_base_gml geometry column
to geography, as the index won't work when using a type cast:

ALTER TABLE data_import.os_address_base_gml ALTER COLUMN wkb_geometry SET
DATA TYPE geography;

Then, the query for reverse geocoding will look like this:

SELECT * FROM data_import.os_address_base_gml
ORDER BY wkb_geometry <->
ST_SetSRID(ST_MakePoint(-3.5504,50.7220),4258)::geography
LIMIT 1;

Using the right data type, a spatial index, and a <-> operator can make this kind of query
an order of magnitude faster.

Beware, though--this operator compares the distances between the centers of bounding
boxes. For points, this is not a problem, as the BBOX center of the point is equal to that
point. But for more complicated shapes the results might be suboptimal. To address this,
one can use the <-> operator as a prefilter, and then do a precise computation with
ST_Distance:

WITH prefilter AS (
 SELECT *, ST_Distance(way, ST_SetSRID('POINT(-100
6705148)'::geometry,900913)) AS dist FROM planet_osm_polygon
 ORDER BY way <-> ST_SetSRID('POINT(-100 6705148)'::geometry,900913) LIMIT
10
)
SELECT * FROM prefilter ORDER BY dist LIMIT 1;

Spatial Data Analysis

[80]

Summary
Spatial analysis functions are a key feature for spatial databases, and PostGIS has a very
rich set of them. One can compose geometries from raw coordinates, compose geometries
into more complex shapes, break down complex shapes into elementary geometries,
calculate spatial metrics, and query features based on their location. Spatial analysis
functions require the geometries to conform to a specification, so validation and automated
repair functions are also provided.

Most spatial analysis functions are easy to understand, but special attention must be paid to
coordinate systems. When using latitude-longitude coordinate systems, it's best to use the
geography data type to ensure the calculated measurements are correct.

3
Data Processing - Vector Ops

Modern databases shine not only at data storage and retrieval, but also data processing. The
set of statistical and mathematical functions in pure PostgreSQL is impressive. In PostGIS,
the same principle applies to spatial data. A wide array of geoprocessing functions is at the
database user's disposal, and all these functions can be called from within SQL statements.
In this chapter, we will discuss the processing capabilities of PostGIS referring as regards to
common GIS operations. Those operations include the following:

Merging and splitting geometries
Buffering and offsetting geometries
Computing polygons' centroids and point-on-surfaces
Computing the difference of geometries
Reprojecting geometries
Querying features based on their spatial relationships

Primer - obtaining and importing
OpenStreetMap data
In this chapter, the examples we will look at will use spatial data from the OpenStreetMap
project, a Wikipedia for maps. It's a convenient data source because it's free for everyone to
use and download, and it has global coverage (although the quality may vary). The OSM
project itself only serves a full dump (called planet.osm), which is huge and hard to
process. Luckily, third-party services offering smaller extracts exist.

Data Processing - Vector Ops

[82]

At the time of writing, there were three notable services:

Mapzen (https://mapzen.com/data/metro-extracts/) offers ready-made
extracts of metropolitan areas around the world for anyone, and custom extracts
for registered users.
Geofabrik (http://download.geofabrik.de/) offers continental and country
extracts. No sign-in is required.
BBBike (http://extract.bbbike.org/) offers custom extracts of medium-sized
areas (up to 24 million square kilometers or 768 MB of data). No sign-in is
required, but a valid e-mail address is. As the extracts are generated on-demand,
it takes a couple of minutes to generate them and give a unique URL.

For the purpose of this chapter's examples, let's pick a city or county-sized extract (so
BBBike and Mapzen services are a best fit) _in _PBF _format_. This is an OSM-specific
exchange format.

After downloading, the file can be imported using the ogr2ogr command-line tool:

 ogr2ogr -t_srs EPSG:32633 -f PostgreSQL "PG:dbname=mastering_postgis
host=localhost user=osm password=osm" planet_17.894_49.888_ef55391f.osm.pbf

Replace the database credentials and PBF file name with yours, and the EPSG code to the
appropriate projection for your area of interest.

This is convenient, as ogr2ogr is widely used for spatial data conversion, but is not
particularly efficient, both in terms of processing power and the disk space required. For
larger, country, or continental extracts, or even a full dump, another OSM import tool such
as osm2pgsql or Imposm is required. This is, however, outside of the scope of this book.

The import tool creates one table per geometry type: points, lines, MultiPolygons, and
MultilLineStrings, and the columns refer to the most commonly used OSM tags.

Merging geometries
In the previous chapter, we learned how to use ST_Collect function to compose Multi-
geometries from components. This is computationally cheap, but sometimes, retaining the
borders between components (for example, land parcels) is not desirable. This is where
union functions come into play.

https://mapzen.com/data/metro-extracts/
http://download.geofabrik.de/
http://extract.bbbike.org/

Data Processing - Vector Ops

[83]

PostGIS has three unioning functions:

ST_Union

ST_MemUnion, which is memory optimized (that is, it will take more time but less
memory)
ST_UnaryUnion, which operates at geometry component-level (and hence is
more suitable for Multi-geometries)

Merging polygons
The usage of unioning functions is similar to other spatial aggregate functions. The
first possibility is to supply two geometries. For example, let's pick two town boundaries
and simulate the administrative boundary if they were merged:

 SELECT ST_Union(
 (SELECT wkb_geometry FROM multipolygons WHERE osm_id = '2828737'),
 (SELECT wkb_geometry FROM multipolygons WHERE osm_id = '2828740')
);

The resulting polygon has no boundary between neighboring towns:

Two polygons about to be merged

Data Processing - Vector Ops

[84]

The result of merging

Now we will add two more towns to the stack, using the second possible syntax: providing
an array of geometries as an argument:

SELECT ST_Union(
ARRAY[
 (SELECT wkb_geometry FROM multipolygons WHERE osm_id = '2828737'),
 (SELECT wkb_geometry FROM multipolygons WHERE osm_id = '2828740'),
 (SELECT wkb_geometry FROM multipolygons WHERE osm_id = '2828739'),
 (SELECT wkb_geometry FROM multipolygons WHERE osm_id = '2828738')

]
);

Finally, let's try to merge all boundaries into one big polygon:

SELECT ST_Union(wkb_geometry) FROM multipolygons WHERE
boundary='administrative';

Merging MultiLineStrings
PostGIS can also merge MultiLineStrings into single-part LineStrings. This is particularly
useful when the geometry is to be further used in another function which doesn't accept
Multi-geometries as arguments. For this to work, however, the input MultiLineString must
not have gaps.

Data Processing - Vector Ops

[85]

ogr2ogr converts OSM relations (road, rail, tourist routes) into
MultiLineStrings. However, not every relation can be sewed together using
ST_LineMerge. Single-track railways or single-carriageway roads are
usually a good example, but some relations, such as dual carriageways,
consist of a collection of disjointed lines. In that case, ST_LineMerge will
just do nothing and return the original MultiLineString.

In this example, a train route composed of multiple sections of track will be sewed together to
form a single-part LineString.

The textual representation of an original MultiLineString is as follows:

SELECT ST_AsText(wkb_geometry) FROM multilinestrings WHERE osm_id =
'4581657';

st_astext
MULTILINESTRING((18.2172473 50.0790981,18.2169285 50.0788042,18.2166262
50.0785414,18.2161234 50.0780898,18.2154094 50.0774614,18.2150988
50.0772028,18.2148354 50.0770007,18.2145185 50.0767715,18.2141338
50.0765137,18.2137063 50.0762518,18.2131764 50.0759516))

After merging, it looks like this:

SELECT ST_AsText(ST_LineMerge((SELECT wkb_geometry FROM multilinestrings
WHERE osm_id = '4581657')));

st_astext
LINESTRING(18.2282796 50.0923211,18.2280783 50.0922193,18.2278694
50.0921051,18.2276675 50.0919549,18.2274702 50.0917769,18.227307
50.0916126,18.2271524 50.0914074,18.2260282 50.0899124,18.225715
50.0895162,18.2255041 50.0892647,18.2253105 50.0890423,18.2250587
50.0887412,18.2245293 50.0880549,18.2237535)

The MultiLineString doesn't have to exist in a database in ready-made form - it can also be
created on the fly using ST_Collect:

SELECT ST_LineMerge(ST_Collect(wkb_geometry)) FROM lines WHERE
waterway='river' AND name = 'Odra';

Data Processing - Vector Ops

[86]

This will merge multiple sections of a single river into a single LineString geometry:

The result of the ST_LineMerge function. The red dots indicate the starting points of consecutive parts of the MultiLineString

Slicing geometries
PostGIS is good at splitting geometries too. There are methods for splitting line and
polygon geometries using a second geometry (blade), and for extracting sections of linear
features based on distance.

Splitting a polygon by LineString
In our first example, we'll split a polygon (county boundary) using a line (river). We will
use an ST_Split function for that.

Data Processing - Vector Ops

[87]

This function accepts two arguments: a geometry to be split, which can be of the
(Multi)Polygon or (Multi)LineString type, and a blade, which can be a LineString for
polygons and LineStrings or a Point for lines:.

A polygon about to be split with a LineString used as a blade

SELECT ST_Split(
 (SELECT wkb_geometry FROM multipolygons WHERE osm_id = '2417246'),
 (SELECT wkb_geometry FROM lines WHERE osm_id = '224461074'))

This yields a GeometryCollection, which isn't supported in most GIS software, including
QGIS. To extract individual parts after splitting, and to visualize the result in QGIS, we'll
need to use the ST_Dump function:.

SELECT (ST_Dump(ST_Split(
 (SELECT wkb_geometry FROM multipolygons WHERE osm_id = '2417246'),
 (SELECT wkb_geometry FROM lines WHERE osm_id = '224461074')))).geom

Data Processing - Vector Ops

[88]

This converts a GeometryCollection into a set of rows, each with a polygon geometry,
which can be visualized by any PostGIS-supporting software without any problems.

Two polygons after executing an ST_Split function

Splitting a LineString with another LineString
In this example, we'll split a linear feature (a road) with another road at an intersection:

SELECT (ST_Dump(ST_Split(
 (SELECT wkb_geometry FROM multilinestrings WHERE osm_id = '333295'),
 (SELECT wkb_geometry FROM multilinestrings WHERE osm_id =
'2344149')))).geom

Data Processing - Vector Ops

[89]

Two intersecting LineStrings

A LineString split using another LineString at an intersection

Data Processing - Vector Ops

[90]

Extracting a section of LineString
LineStrings can be sliced not only using other geometries, but also based on a fraction of
their length. This is done by the ST_LineSubstring function. It accepts three arguments:
an input geometry, which must be a LineString (a MultiLineString must be merged using
ST_LineMerge), the starting fraction, and the ending fraction. For example, we can extract
the first half of the Odra river as follows:

SELECT ST_LineSubstring(
 (SELECT ST_LineMerge(ST_Collect(wkb_geometry)) FROM lines WHERE
name='Odra' AND waterway='river'),
 0,
 0.5
)

A line cut in half with an ST_LineSubstring

Data Processing - Vector Ops

[91]

When distance values are needed, the ST_Length function can be used to calculate the
necessary fraction. For example, say that railway line No. 177 has been scheduled for repair
between the 13th and 24th kilometer. How do we draw this section on a map?

WITH line_geom AS (SELECT ST_LineMerge((SELECT wkb_geometry FROM
multilinestrings WHERE osm_id = '4581657')))
SELECT ST_LineSubstring(
 line_geom.st_linemerege,
 13000 / ST_Length(line_geom.st_linemerge),
 24000 / ST_Length(line_geom.st_linemerge)
) FROM line_geom;

The WITH clause is called a common table expression (CTE). It allows us to store the
geometry in question as a virtual table after merging as a virtual table, so we don't have to
type SELECT ST_LineMerge... and its ID over and over again.

The geometry is stored in the EPSG:32633 coordinate system, so its units are meters.
Therefore, we need to multiply the kilometer values by 1,000. The result looks like the
following:

A Lline section extracted by the starting and ending distance

Data Processing - Vector Ops

[92]

Buffering and offsetting geometries
A buffer is a very common GIS operation. PostGIS can create polygonal buffers from any
geometry with configurable distance and approximation levels.

For example, a simple 1,000 meter buffer from a Point looks like the following:

SELECT ST_Buffer(
 (SELECT wkb_geometry FROM points WHERE osm_id = '253525668'),
 1000);

A simple buffer with default parameters

The first argument is an input geometry, and the second is the buffer distance in the units of
the geometry's coordinate system.

If the geometry is in a latitude-longitude coordinate system, then cast the
geometry to a Geography type in order to be able to give the distance in
meters.

Data Processing - Vector Ops

[93]

The default buffer uses eight segments to approximate a quarter circle. If it's too coarse,
more segments can be introduced at the expense of processing power:

SELECT ST_Buffer(
 (SELECT wkb_geometry FROM points WHERE osm_id = '253525668'),
 1000,32);

We can also do the opposite, such as when we create an octagonal buffer with only
2 segments per quarter circle:

SELECT ST_Buffer(
 (SELECT wkb_geometry FROM points WHERE osm_id = '253525668'),
 1000,2);

The boundaries of an ST_Buffer output dependent on segment count. Green -- 4 segments., yellow -- 8 segments,. red -- 32 segments

While buffers can be used for doing radius queries (find all restaurants
within 1,000 meters of my location), PostGIS has a specialized function for
that, which is about an order of magnitude faster. Refer to the
ST_DWithin function description in the Spatial relationships section.

Data Processing - Vector Ops

[94]

To replicate the dissolve result option found in Desktop GIS software, ST_Buffer can be
used in conjunction with ST_Union. For example, to create a 200 meter buffer zone from all
rivers as one big MultiPolygon, enter the following:

SELECT ST_Union(
 ST_Buffer(wkb_geometry,200)
) FROM lines WHERE waterway = 'river';

The result of using ST_Unioning multiple buffers

Offsetting features
The offset function is used to create a linear feature parallel to the original line at a specified
offset. For example, let's imagine that we are designing a second track for a railway line. As
a base, we will create a geometry parallel to the existing track at a 4 meter offset:

SELECT ST_OffsetCurve(ST_LineMerge(wkb_geometry),4) FROM multilinestrings
WHERE osm_id = '4581657';

Despite its name, the ST_OffsetCurve function operates on ordinary LineStrings. The
MultiLineStrings must be merged with ST_LineMerged prior to analysis:

Data Processing - Vector Ops

[95]

An original line (solid) and offset (dashed)

The ST_OffsetCurve function creates a new geometry on the left side of the original
geometry, maintaining its direction. To create a new geometry to the right, simply supply a
negative offset value.

This function also offers further fine-tuning options, including the following:

quad_segs: Number of segments to approximate a quarter circle (just like the
third parameter for ST_Buffer), defaults to 8
join: One of round, mitre, bevel - line join style
mitre_limit: Mitre ratio limit for mitre join

The fine-tuning parameters are given as a third argument, in the form of a space-separated
string. So, a 32-segment quarter circle has a mitre join and a mitre limit of 2:

SELECT ST_OffsetCurve(ST_LineMerge(wkb_geometry),4,'quad_segs=32 join=mitre
mitre_limit=2') FROM multilinestrings WHERE osm_id = '4581657';

Data Processing - Vector Ops

[96]

Creating convex and concave hulls
Another possibility for creating polygons from points is to compute a convex or concave
hull. A convex hull is a polygon containing all input points. It's often described as a rubber
band.

PostGIS has an ST_ConvexHull function. It takes one argument - an input geometry. It's
not an aggregate function, so in order to supply a set of points, the ST_Collect aggregate
has to be used first.

The convex hull of all mineshafts is written as follows:

SELECT ST_ConvexHull(
 ST_Collect(wkb_geometry)
) FROM points WHERE man_made = 'mineshaft'

A set of points and a convex hull

Data Processing - Vector Ops

[97]

The convex hull is cheaply computed, but it's rarely a good approximation. Distant and
isolated features extend the hull, covering areas where the phenomenon isn't present. To
address this problem, another algorithm, called a concave hull, was created.

In PostGIS, the implementation is provided by the ST_ConcaveHull function. Apart from
the geometry, it takes two additional parameters: the concavity factor (between 0 and 1)
controlling the maximal fraction of the convex hull's area that the concave hull can have,
and a Boolean (TRUE or FALSE, default FALSE) controlling whether the output polygon can
have holes:

SELECT ST_ConcaveHull(
 ST_Collect(wkb_geometry),
 0.5,
 TRUE
) FROM points WHERE man_made = 'mineshaft'

A set of points and concave hulls with (darker) and without (lighter) holes

Data Processing - Vector Ops

[98]

Computing centroids, points-on-surface, and
points-on-line
Whether it's needed for dataset generalization, labelling, or using in a point-only
calculation, the centroid calculation right in the DB might come in handy. This is the job of
the ST_Centroid function. The usage is simple, as the only required parameter is the input
geometry, which can be of any type (an ST_Centroid of a point will return the original
point). However, the most common (and legitimate) use case for centroid calculation is for
polygons. Let's compute centroids for all water bodies in our database:

SELECT ogc_fid, name, ST_Centroid(wkb_geometry) FROM multipolygons WHERE
"natural" = 'water';

Polygons and their centroids

But for some features, such as an oxbow lake, the centroid isn't a correct representation
because it can be located outside of the polygon's interior. Also, for lines, the centroid can be
computed, but the resultant point will rarely be located precisely on a line.

Data Processing - Vector Ops

[99]

For these cases, another function, ST_PointOnSurface, was designed. The point-on-
surface is guaranteed to be contained within the polygon's interior (or along a line, in case a
LineString is supplied):

SELECT ogc_fid, name, ST_PointOnSurface(wkb_geometry) FROM multipolygons
WHERE "natural" = 'water';

Centroids (lighter/yellow) and points-on-surface (darker/green)

Reprojecting geometries
Reprojecting, also called transformation, is a process of converting a geometry's
coordinates from one coordinate system to another. Since PostGIS spatial analysis functions
can't operate on geometries with different coordinate systems, it's a very important
functionality. It's provided by the ST_Transform function.

ST_Transform accepts two arguments: the input geometry and the target SRID. For
example, to transform the coordinates of a point feature (city center) to latitude-longitude,
we write the following:

SELECT ST_AsText(ST_Transform(wkb_geometry,4326)) FROM points WHERE osm_id
= '253525668';

st_astext
POINT(18.5419933 50.0955793)

Data Processing - Vector Ops

[100]

While ST_Transform can be used on the fly, it's computationally expensive and can cause a
complex query to run very slowly. If it's necessary to run a spatial analysis using tables with
different SRIDs, it's will be wise to create a materialized view with geometries reprojected
beforehand:

CREATE MATERIALIZED VIEW boundaries_3857 AS SELECT ogc_fid, name, boundary,
admin_level, ST_Transform(wkb_geometry,3857) AS wkb_geometry FROM
multipolygons WHERE boundary='administrative';

This will create a materialized view containing a subset of the multipolygons table
(administrative boundaries) with their geometries reprojected into the web
mercator coordinate system, which has an SRID of 3857.

For efficient querying, this materialized view should also have a spatial index:

CREATE INDEX boundaries_3857_sidx ON boundaries_3857 USING
GIST(wkb_geometry);

Now, any spatial queries with features in the EPSG:3857 coordinate system will run as
smoothly as possible.

Geometries can also be reprojected in place, for example:

UPDATE multilinestrings SET wkb_geometry = ST_Transform(wkb_geometry,3857);

But this will fail if a geometry column has a typmod indicating the only possible SRID,
which is true in our case, and the query will result in an error:

Geometry SRID (3857) does not match column SRID (32633)

To work around this, a typmod can be removed with an ALTER COLUMN statement:

ALTER TABLE multilinestrings ALTER COLUMN wkb_geometry SET DATA TYPE
geometry;

Beware, though - this will remove the protection from accidentally inserting a geometry in
another SRID into the table.

Data Processing - Vector Ops

[101]

Spatial relationships
In the previous chapter, one spatial relationship function - the ST_Intersects, was
introduced. This is only the beginning of the story; there are many more, finer functions
available, to explore the relationships between features more precisely. For more details,
read on.

Touching
A geometry is defined as touching when at least its vertex or edge lies on the edge of the
reference geometry, but no points are inside its interior.

For example, let's find all the tributaries of the Odra river:

SELECT name,waterway FROM lines WHERE waterway in ('river','stream') AND
name != 'Odra' AND ST_Touches(
 wkb_geometry,
 (SELECT ST_Collect(wkb_geometry) FROM lines WHERE name = 'Odra')
);

The ST_Collect is needed for collecting all sections into a single geometry (ST_Touches
accepts MultiLineStrings, so there's no need for Union or LineMerge there), and the name
!= 'Odra' condition is needed to exclude neighbouring sections of the same river.

Crossing
A geometry is defined as crossing when at least one vertex of it lies in the interior of the
reference geometry (when it's a polygon), or crosses the LineString. An example of a query
using this relationship is finding all the bridges crossing the Odra river:

SELECT name,wkb_geometry FROM lines WHERE other_tags LIKE '%bridge%' AND
ST_Crosses(wkb_geometry,
(SELECT ST_Collect(wkb_geometry) FROM lines WHERE waterway='river' AND
name='Odra'));

Data Processing - Vector Ops

[102]

A set of LineStrings fulfilling the ST_Crosses condition

Overlapping
Overlapping geometries share some portion of their interiors, but one can't completely
cover another. This relationship is tested with the ST_Overlaps function. This query will
reveal all bus routes that share some part with the E-3 route:

SELECT ogc_fid, other_tags, wkb_geometry FROM multilinestrings WHERE
ST_Overlaps(
 wkb_geometry,
 (SELECT wkb_geometry FROM multilinestrings WHERE other_tags LIKE
'%E-3%')
);

Data Processing - Vector Ops

[103]

Please note that, if a route exactly duplicates the path, or is a subsection that is completely
within the bigger route, it will not be included in the result:

A bus route network: the E-3 route (red), overlapping routes (violet), and other routes (gray)

Containing
In contrast to crossing and overlapping, containing means a geometry must be completely
covered by the reference geometry, and no point may be located outside. To test this, two
functions are provided: ST_Within and ST_Contains. The only difference is the order of
arguments.

Data Processing - Vector Ops

[104]

First, we will use the ST_Within function to determine how many water bodies are within
the boundaries of Rybnik (which literally means fish pond in Czech, by the way):

SELECT name,wkb_geometry FROM multipolygons WHERE "natural"='water' AND
ST_Within(wkb_geometry,
(SELECT wkb_geometry FROM multipolygons WHERE name='Rybnik' AND
admin_level='7'));

The result of an ST_Within query - a set of polygons fully contained within another polygon

Then we will deal with the second query - finding power towers in Rudnik using
ST_Contains:

SELECT name,wkb_geometry FROM points WHERE other_tags LIKE '%power%' AND
ST_Contains(
(SELECT wkb_geometry FROM multipolygons WHERE name='gmina Rudnik' AND
admin_level='7'),wkb_geometry);

Did you notice the difference? When using ST_Within, the geometries to be found are
supplied as the first argument, and the boundary to search within as the second. For
ST_Contains, the search boundary was first, and the geometries to be found, second. If we
swapped the arguments, the query would return 0 rows: no polygon (at least, not a valid
one) will fit into a point.

Data Processing - Vector Ops

[105]

Radius queries
For finding features located within a specified distance, PostGIS is equipped with a
specialized ST_DWithin function. It can be imagined as a combination of ST_Buffer and
ST_Within, only it omits the buffer geometry construction step and is much faster.

The syntax is as follows:

ST_DWithin(tested_geometry,reference_geometry,distance)

Let's look at an example - listing all villages located within 10 kilometers of Rybnik city:

 SELECT name,wkb_geometry FROM points WHERE place='village' AND ST_DWithin(
 wkb_geometry,
 (SELECT wkb_geometry FROM points WHERE name='Rybnik' AND place='city'),
 10000
)

 Rybnik city (in the middle), villages within 10 kilometers (black), and other villages (gray)

Data Processing - Vector Ops

[106]

Summary
Vector operation functions can be used as a rich geoprocessing toolbox, all without leaving
the database environment. Using nothing but Spatial SQL, one can split and merge features,
reproject them, create buffers and hulls, offset geometries, and much more. And when it
comes to querying, PostGIS offers fine-grained spatial relationship functions to pick only
specific features. This wouldn't be possible without a rich open source GIS ecosystem; the
geoprocessing and spatial relationship functions are available thanks to the GEOS library,
and reprojections are done with the help of the PROJ.4 library. Other database vendors
often choose to implement spatial functions from scratch, and stick to a moderate set of
functions defined in the OGC specification. The geoprocessing toolbox is one of PostGIS's
greatest strengths. This toolbox is not limited to vector data manipulation. In the next
chapter, we will discuss the functions available for raster data processing.

4
Data Processing - Raster Ops

PostGIS raster's goal is to implement the raster type as much as possible like the geometry
type is implemented in PostGIS and to offer a single set of overlay SQL functions (such as
ST_Intersects) operating seamlessly on vector and raster coverages.

Each raster or raster tile is stored as a row of data in a PostgreSQL database table. It is a
complex type, embedding information about the raster itself (width, height, number of
bands, pixel type for each band, and no data value for each band) along with its
geolocalization (pixel size, upper left pixel center, rotation, and SRID). These metadata are
accessible by raster_columns view.

Something that shows flexibility of PostGIS raster support is in-db / out-db raster tile
storage. Operations on these are identical, no matter if the raster is stored internally in
PostgreSQL or file in filesystem. The only drawback is query processing time for out-db
raster coverages.

PostGIS Raster is expressed in different forms, depending on the level at which it is
referred:

WKT: Well Known Text refers to the human readable text format used when
inserting a raster with ST_RasterFromText() and retrieving a raster with
ST_AsText() (these two are not implemented yet). This format can result in the
loss of precision when used with floating point values. This is why the HEXWKB
form is preferred when importing/exporting in textual form.
WKB: Well Known Binary refers to the binary equivalent of the WKT. It is used
when inserting a raster using ST_RasterFromWKB() and retrieving a raster using
ST_AsBinary().

Data Processing - Raster Ops

[108]

HEXWKB: Hexadecimal WKB is an exact hexadecimal representation of the
WKB form. It is also called the canonical form. It is what you get from the loader
(raster2pgsql), what is accepted by the raster type input function
(ST_Raster_In), and what you get when outputting the value of a raster field
without conversion (for example, SELECT rast FROM table).
Serialized: The serialized format is what is written to the filesystem by the
database. It differs from WKB in that it does not have to store the endianness of
the data and that it must be aligned. Serializing is the action of writing data to the
database file, deserializing is the action of reading this data.

As a convention similar to geometry columns (column named geom), the rast column is
used for storing raster datatype. The result of raster conversion functions maybe returned
as the function name; it's our role to set it with AS keyword.

There are a variety of PostGIS raster functions especially created for raster analysis and
processing. We can divide them into some groups:

Raster table management
Raster constructors
Dataset accessors and editors
Band accessors and editors
Pixel accessors and editors
Raster geometry editors
Outputs
Processing tools

Preparing data
Raster import was covered in Chapter 1, Importing Spatial Data, subject and exporting is on
its way in the next chapter, so we can look strictly into vector <-> raster conversion and
processing.

For our use case, we will use EU-DEM dataset, produced using Copernicus data and
information funded by European Union - EU-DEM layers. It's one arc second model of the
whole European Union (without overseas territories). With its open license, we can use it
with no concerns. The dataset is accessible by h t t p ://w w w . e e a . e u r o p a . e u /d a t a - a n d - m a p s

/d a t a /e u - d e m .

http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem
http://www.eea.europa.eu/data-and-maps/data/eu-dem

Data Processing - Raster Ops

[109]

As a vector layer, we can use OpenStretMap data for the Poland and Czech Republic
administrative units.

In the first step, let's import the dataset as we learned in Chapter 1, Importing Spatial Data.
For optimization of import processes, look into metadata, for SRID and size of raster,
gdalinfo makes it easy:

user@machine:~/dev/gis/dem$ gdalinfo eudem_dem_5deg_n45e015.tif
Driver: GTiff/GeoTIFF
Files: eudem_dem_5deg_n45e015.tif
Size is 18000, 18000
Coordinate System is:
GEOGCS["ETRS89",
 DATUM["European_Terrestrial_Reference_System_1989",
 SPHEROID["GRS 1980",6378137,298.2572221010042,
 AUTHORITY["EPSG","7019"]],
 AUTHORITY["EPSG","6258"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4258"]]
Origin = (15.000000000000000,50.000000000000000)
Pixel Size = (0.000277777777778,-0.000277777777778)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 COMPRESSION=LZW
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (15.0000000, 50.0000000) (15d 0' 0.00"E, 50d 0' 0.00"N)
Lower Left (15.0000000, 45.0000000) (15d 0' 0.00"E, 45d 0' 0.00"N)
Upper Right (20.0000000, 50.0000000) (20d 0' 0.00"E, 50d 0' 0.00"N)
Lower Right (20.0000000, 45.0000000) (20d 0' 0.00"E, 45d 0' 0.00"N)
Center (17.5000000, 47.5000000) (17d30' 0.00"E, 47d30' 0.00"N)
Band 1 Block=18000x1 Type=Float32, ColorInterp=Gray
 Min=54.810 Max=2424.210
 Minimum=54.810, Maximum=2424.210, Mean=317.651, StdDev=254.987
 NoData Value=nan
 Metadata:
 STATISTICS_MAXIMUM=2424.2099609375
 STATISTICS_MEAN=317.65072388322
 STATISTICS_MINIMUM=54.810001373291
 STATISTICS_STDDEV=254.98702538825

Data Processing - Raster Ops

[110]

Now we know that EPSG:4258 (ETRS89) should be taken and tiling applied; in our case,
4500 px will be good approach. Using copy, it will be done faster.

raster2pgsql -s 4258 -C -I -l 2,4,8 -t 4500x4500 -F -Y *.tif raster_ops.dem
| psql -d mastering_postgis -U osm

We need to provide port and host name to psql for the command to work.

If you don't use -C flag during import, probably the AddRasterConstraints() function
will be used later to fill in correct values in the raster_columns catalog.

Processing and analysis
Now we are ready to start processing our dataset and make some scientific analysis.

The most common use cases of raster data are imagery, DEM, and statistical data. Right
now, we'll look closer to Digital Elevation Model processing.

We can use the following:

ST_Slope

ST_Hillshade

ST_Aspect

ST_TPI

ST_TRI

ST_Roughness

All these functions are internally realized as MapAlgebra Callback functions. Later we will
see how to do it on our way. So, calculate the slope values of our DEM data. The function
syntax is like this:

ST_Slope(raster rast, integer nband=1, text pixeltype=32BF, text
units=DEGREES, double precision scale=1.0, boolean
interpolate_nodata=FALSE);

Data Processing - Raster Ops

[111]

We should especially pay attention to scale parameter. In case of geographical coordinate
reference systems (such as our imported data), when units of distance are in degrees, and
elevation in meters, use scale=111120, or in case of imperial units set it to 370400. Units
parameter offers DEGREE, RADIANS, or PERCENT as a result of calculations. Because there are
two variants of this function, arguments must be explicitly cast.

For calculation time reduction, I will use the clipped version of the dem table named clip.
We will return to examples of extraction raster parts later in this chapter:

SELECT rid, ST_Slope(rast::raster,
'1'::int,'32BF'::text,'DEGREES'::text,'111120'::double precision) AS rast
FROM raster_ops.clip WHERE rid='4';

Data Processing - Raster Ops

[112]

By analogue to slope calculations, aspect function is executed as follows, and the output
raster will have aspect values in each pixel, in units specified in the fourth argument:

SELECT rid, ST_Aspect(rast::raster,
'1'::int,'32BF'::text,'DEGREES'::text,'111120'::double precision) FROM
raster_ops.clip WHERE rid='4';

More arguments must be set on ST_Hillshade functions.

ST_HillShade(raster rast, integer band=1, text pixeltype=32BF, double
precision azimuth=315, double precision altitude=45, double precision
max_bright=255, double precision scale=1.0, boolean
interpolate_nodata=FALSE);

Data Processing - Raster Ops

[113]

We can execute a query with only raster column and band and it will work. But for LatLon
datasets again, every argument must be explicitly set and cast to type.

Sometimes we need to change values of our dataset in an organized way, not in algebraic
way, but as some groups-classes. There's a reclassify tool in PostGIS for that:

SELECT rid,ST_Reclass(
(ST_SLOPE(rast::raster,'1'::int,'32BF'::text,'DEGREES'::text,'111120'::doub
le precision))::raster,
 '1'::int, '0-5):1, 5-10:2, [10-15):3, 15-25):4,
[25-90):5'::text,'32BF'::text)
FROM eudem.clip;

Pay attention to class borders and brackets. In this example, we are reclassifying the
ST_slope function results to five classes of slope:

0-4.99
5-9.99
10-14.99
15-24.99
25-90 degrees
with 1-5 values.

For ST_TRI() and ST_TPI(), the case is more easier as the only argument for these
functions is raster column.

Data Processing - Raster Ops

[114]

TPI measures the relative topographic position of the central point as the difference
between the elevation at this point and the mean elevation within a predetermined
neighbourhood. Using TPI, landscapes can be classified in slope position classes. TPI is only
one of a vast array of morphometric properties based on neighbouring areas that can be
useful in topographic and DEM analysis (see Gallant and Wilson, 2000) Gallant, J.C., Wilson,
J.P., 2000. Primary topographic attributes. In: Wilson, J.P., Gallant, J.C. (Eds.), Terrain Analysis:
Principles and Applications. Wiley, New York, pp. 51-85.

Now, let's look into more complicated processing. As there's not much defined functions for
DEM, sometimes we need to define it.

ST_MapAlgebra() is the tool that is needed.

There are two variants of this function expression and callbacfunc with one or two
rasters.

The Expression version syntax is as follows:

raster ST_MapAlgebra(raster rast, integer nband, text pixeltype, text
expression, double precision nodataval=NULL);
raster ST_MapAlgebra(raster rast1, integer nband1, raster rast2, integer
nband2, text expression, text pixeltype=NULL, text extenttype=INTERSECTION,
text nodata1expr=NULL, text nodata2expr=NULL, double precision
nodatanodataval=NULL);

Data Processing - Raster Ops

[115]

extenttype values allowed:

INTERSECTION: The extent of the new raster is the intersection of the two
rasters. This is the default.
UNION: The extent of the new raster is the union of the two rasters.
FIRST: The extent of the new raster is the same as the one of the first raster.
SECOND: The extent of the new raster is the same as the one of the second raster.

These values are permitted for expression:

[rast1] or [rast1.val]: This is the pixel value of the pixel of interest from
rast1

[rast1.x]: This is the 1-based pixel column of the pixel of interest from rast1
[rast1.y]: This is the 1-based pixel row of the pixel of interest from rast1
[rast2] or [rast2.val]:This is the pixel value of the pixel of interest from
rast2

[rast2.x]: This is the 1-based pixel column of the pixel of interest from rast2
[rast2.y]: This is the 1-based pixel row of the pixel of interest from rast2

Our first expression is as follows:

CREATE TABLE ceiled AS SELECT ST_MapAlgebra(rast, 1, NULL,
'ceil([rast]*[rast.x]/[rast.y]+[rast.val])') FROM eudem.clip

The result rendered by QGIS is as follows:

Data Processing - Raster Ops

[116]

For callbackfunc version use trickier:

raster ST_MapAlgebra(raster rast1, integer nband1, raster rast2, integer
nband2, regprocedure callbackfunc, text pixeltype=NULL, text
extenttype=INTERSECTION, raster customextent=NULL, integer distancex=0,
integer distancey=0, text[] VARIADIC userargs=NULL);

Built-in callbackfunc:

ST_Distinct4ma: This is the raster processing function that calculates the
number of unique pixel values in a neighborhood
ST_InvDistWeight4ma: This is the raster processing function that interpolates a
pixel's value from the pixel's neighborhood
ST_Max4ma: This is the raster processing function that calculates the maximum
pixel value in a neighborhood
ST_Mean4ma: This is the raster processing function that calculates the mean pixel
value in a neighborhood
ST_Min4ma: This is the raster processing function that calculates the minimum
pixel value in a neighborhood
ST_MinDist4ma: This is the raster processing function that returns the minimum
distance (in number of pixels) between the pixel of interest and a neighboring
pixel with value
ST_Range4ma: This is the raster processing function that calculates the range of
pixel values in a neighborhood
ST_StdDev4ma: This is the raster processing function that calculates the standard
deviation of pixel values in a neighborhood
ST_Sum4ma: This is the raster processing function that calculates the sum of all
pixel values in a neighborhood

As an example, use st_mean4ma:

SELECT rid, st_mapalgebra(rast, 1, 'st_mean4ma(double
precision[][][],integer[][],text[])'::regprocedure, '32BF'::text,
'FIRST'::text, NULL) FROM raster_ops.clip

We are not bound to these built in functions-we can prepare our own PL/pgSQL callback-
just remember that it should have input arguments and should return the following:

 'sample_callbackfunc(double precision[], integer[], text[])'::regprocedure

Data Processing - Raster Ops

[117]

Analytic and statistical functions
Do you remember ST_Reclass? How about getting good classes? There are two very
interesting tools in PostGIS. ST_Histogram() and ST_Quantile(). First, return SETOF
record of the defined number of histogram bins. The only thing we need to set is the raster
column, band, and number of bins. We can break results into min, max, count, and
percent with SELECT (histogram).* syntax.

mastering_postgis=# SELECT (stat).* FROM (SELECT ST_Histogram(rast,1,6) AS
stat FROM eudem.clip) AS foo;
 min | max | count | percent
------------------+------------------+-------+---------------------
 440.980010986328 | 549.598332722982 | 19517 | 0.103899491602119
 549.598332722982 | 658.216654459635 | 76015 | 0.404668742846496
 658.216654459635 | 766.834976196289 | 55312 | 0.29445553514866
 766.834976196289 | 875.453297932943 | 26941 | 0.14342143788762
 875.453297932943 | 984.071619669597 | 8320 | 0.0442918363544412
 984.071619669597 | 1092.68994140625 | 1740 | 0.00926295616066438
(6 rows)

The second tool helps us to select class breaks. Here, the execution is even easier-only
raster column and band are necessary.

mastering_postgis=# SELECT (stat).* FROM (SELECT ST_Quantile(rast,1) AS
stat FROM eudem.clip) AS foo;
 quantile | value
----------+------------------
 0 | 440.980010986328
 0.25 | 593.859985351562
 0.5 | 655.929992675781
 0.75 | 742.580017089844
 1 | 1092.68994140625
(5 rows)

It is possible to set real quantile percents and get values with ARRAY[].

mastering_postgis=# SELECT (stat).* FROM (SELECT
ST_Quantile(rast,1,ARRAY[0.3,0.6,0.88]) AS stat FROM eudem.clip) AS foo;
 quantile | value
----------+------------------
 0.3 | 606.700012207031
 0.6 | 684.010009765625
 0.88 | 806.630004882812
(3 rows)

Data Processing - Raster Ops

[118]

Vector to raster conversion
The most common method to change vector geometries to raster is using the ST_AsRaster
function. The only drawback is that it needs reference raster geometry.

CREATE TABLE raster_ops.admin_rast AS
SELECT ST_Union(ST_AsRaster(geometry, rast, '32BF', '1', -9999)) rast
FROM raster_ops.admin, (SELECT rast FROM eudem.clip LIMIT 1) rast;

This function allows you to set values of raster pixels according to attribute value, in our
example, the height column.

CREATE TABLE raster_ops.admin_rast AS
SELECT ST_Union(ST_AsRaster(geometry, rast, '32BF', height, -9999)) rast
FROM raster_ops.admin, (SELECT rast FROM eudem.clip LIMIT 1) rast;

Raster to vector conversion
The most useful function there for raster values to Vector is ST_DumpAsPolygons(). As a
result we get geomval (set-of-records).

SELECT rid, (foo).*
 FROM (SELECT rid,
(ST_DumpAsPolygons(ST_Reclass((ST_SLOPE(rast::raster,'1'::int,'32BF'::text,
'DEGREES'::text,'111120'::double precision))::raster, '1'::int,'0-5):1,

Data Processing - Raster Ops

[119]

5-15]:2, [10-15:3, [15-25):4, 25-90]:5'::text,'32BF'::text))) FROM
eudem.clip) AS foo;

Another way to get some information is to query for values of raster cell at point of interest.
As an example, let's check the value of DEM height for Istebna commune center:

mastering_postgis=# SELECT ST_Value(c.rast,(SELECT geom FROM
raster_ops.places WHERE name='Istebna')) FROM eudem.clip c;
 st_value

 661.260009765625
(1 row)

Spatial relationship
The most common need for extraction of some raster data from larger dataset is to reduce
computing time. Let's look into spatial relationship and extraction functions in PostGIS. For
getting results in raster space, we should use ST_Clip() and ST_Intesection() for
vector space results.

Data Processing - Raster Ops

[120]

In the previous example, we extracted one raster cell value for vector point. Now, we need
to query for multiple point values. There we should use the ST_Intersection() function.
As a standard, this function returns geoval type in vector space, that we need to join with
our vector points. Let's look at an example:

SELECT foo.name,
 (foo.geomval).val AS height
FROM (
 SELECT
 ST_Intersection(A.rast, g.geom) As geomval,
 g.name
 FROM eudem.clip AS A
 CROSS JOIN (
 SELECT geom, name FROM raster_ops.places WHERE type='village'
) As g(geom, name)
 WHERE A.rid = 4
) As foo;
 name | height
------------+------------------
 Koniaków | 742.25
 Jaworzynka | 629.849975585938
 Istebna | 661.260009765625
(3 rows)

Here, (geomval).val syntax is used, as it is composite data type, and in our case we don't
need feature geometry.

This function is very computing expensive, as it converts raster coverage with
DumpAsPolygons, and intersection is checked in vector space. For that reason, we should
restrict raster extent or even clip it to vector AOI envelope. In my case, it was 51 seconds for
relative small DEM tile. How to do it? As mentioned earlier, ST_Clip() comes to the
rescue. Take a look at this:

SELECT ST_Clip(rast::raster, 1, (SELECT geometry FROM raster_ops.admin
LIMIT 1),true) FROM eudem.dem d;

The query resulted in 80 tiles, 79 blank, and 43 seconds execution time. For sure, we must
use some spatial extent filtering. Most query execution time effective is && (bounding box).

SELECT ST_Clip(rast::raster, 1, (SELECT geometry FROM raster_ops.admin
LIMIT 1),true) FROM eudem.dem d WHERE (SELECT geometry FROM
raster_ops.admin) && d.rast;

Better, 1 row and 0.8s execution. Let's look into resulting clipped raster. But, if you look at
the following figure, you will see that everything outside of admin polygon is filled with
NODATA.

Data Processing - Raster Ops

[121]

SELECT ST_Clip(rast::raster, 1, (SELECT ST_Envelope(geometry) FROM
raster_ops.admin LIMIT 1),true)
 FROM eudem.dem d
 WHERE (SELECT geometry FROM raster_ops.admin) && d.rast;

When we use ST_Envelope, not a natural border polygon, execution time is even better
(0.5s in our case).

Data Processing - Raster Ops

[122]

Metadata
Last but not least, let's try to get out some metadata for our raster coverages. All the
information required for it is stored in the raster_columns catalog as mentioned before.
But PostGIS offers a variety of functions for metadata return.

For example, consider ST_ScaleX:

SELECT ST_ScaleX(st_slope) FROM raster_ops.slope;
 rid | st_scalex
-----+--------------
 1 | 0.0002777777778

Summary
That's only few of the possibilities of raster analysis in PostGIS environment, showcased in
this chapter. But if you're familiar with geometry, raster should be your friend, as it speaks
the same language.

Next, we'll look into exporting our dataset from PostGIS to other GIS formats, rasters too!

5
Exporting Spatial Data

By now you have gained experience importing and working with spatial data, so it is now
time to get it out of a database. This chapter is all about exporting data from
PostgreSQL/PostGIS to files or other data sources. Sharing data via the web is no less
important, but it has its own specific process, and is taken care of in a separate chapter.

There may be different reasons for having to export data from a database, but certainly
sharing it with others is among the most popular ones. Backing the data up or transferring
it to other software packages for further processing are other common reasons for learning
export techniques.

In this chapter, we'll have a closer look at the following:

Exporting data using \COPY (and COPY)
Exporting vector data using pgsql2shp
Exporting vector data using ogr2ogr
Exporting data using GIS clients
Outputting rasters using GDAL
Outputting rasters using psql
Using the PostgreSQL backup functionality

Basically, this chapter is structured in a very similar way to Chapter 1, Importing Spatial
Data, which dealt with importing the data. We just do the steps the other way round. In
other words, this chapter may give you a bit of a déjà vu feeling.

Exporting Spatial Data

[124]

Exporting data using \COPY in psql
When we were importing data, we used the psql \COPY FROM command to copy data from
a file to a table. This time, we'll do it the other way round - from a table to a file - using the
\COPY TO command.

\COPY TO can not only copy a full table, but also the results of a SELECT query, and that
means we can actually output filtered sub datasets of the source tables.

Similarly to the method we used to import, we can execute \COPY or COPY in different
scenarios: We'll use psql in interactive and non-interactive mode, and we'll also do the very
same thing in PgAdmin.

It is worth remembering that COPY can only read/write files that can be
accessed by an instance of the server, usually files that reside on the same
machine as the database server.

For detailed information on \COPY syntax and parameters, type:

\h copy

Exporting data in psql interactively
In order to export the data in interactive mode, we first need to connect to the database
using psql:

psql -h localhost -p 5434 -U postgres

Then type the following:

\c mastering_postgis

Once connected, we can execute a simple command:

\copy data_import.earthquakes_csv TO earthquakes.csv WITH DELIMITER ';' CSV
HEADER

The preceding command exported a data_import. earthquakes_csv table to a file
named earthquakes.csv, with ';' as a column separator. A header in the form of
column names has also been added to the beginning of the file. The output should be
similar to the following:

COPY 50

Exporting Spatial Data

[125]

Basically, the database told us how many records have been exported. The content of the
exported file should exactly resemble the content of the table we exported from:

time;latitude;longitude;depth;mag;magtype;nst;gap;dmin;rms;net;id;updated;p
lace;type;horizontalerror;deptherror;magerror;magnst;status;locationsource;
magsource
2016-10-08
14:08:08.71+02;36.3902;-96.9601;5;2.9;mb_lg;;60;0.029;0.52;us;us20007csd;20
16-10-08 14:27:58.372+02;15km WNW of Pawnee,
Oklahoma;earthquake;1.3;1.9;0.1;26;reviewed;us;us

As mentioned, \COPY can also output the results of a SELECT query. This means we can
tailor the output to very specific needs, as required. In the next example, we'll export data
from a spatialized earthquakes table, but the geometry will be converted to a WKT (well-
known text) representation. We'll also export only a subset of columns:

\copy (select id, ST_AsText(geom) FROM
data_import.earthquakes_subset_with_geom) TO earthquakes_subset.csv WITH
CSV DELIMITER '|' FORCE QUOTE * HEADER

Once again, the output just specifies the amount of records exported:

COPY 50

The executed command exported only the id column and a WKT-encoded geometry
column. The export force wrapped the data into quote symbols, with a pipe (|) symbol used
as a delimiter. The file has header:

id|st_astext
"us20007csd"|"POINT(-96.9601 36.3902)"
"us20007csa"|"POINT(-98.7058 36.4314)"

Exporting data in psql non-interactively
If you're still in psql, you can execute a script by simply typing the following:

\i path/to/the/script.sql

For example:

\i code/psql_export.sql

Exporting Spatial Data

[126]

The output will not surprise us, as it will simply state the number of records that were
outputted:

COPY 50

If you happen to have already quitted psql, the cmd \i equivalent is -f, so the command
should look like this:

Psql -h localhost -p 5434 -U postgres -d mastering_postgis -f
code/psql_export.sql

Not surprisingly, the cmd output is once again the following:

COPY 50

Exporting data in PgAdmin
In PgAdmin, the command is COPY rather than \COPY. The rest of the code remains the
same. Another difference is that we need to use an absolute path, while in psql we can use
paths relative to the directory we started psql in.

So the first psql query translated to the PgAdmin SQL version looks like this:

copy data_import.earthquakes_csv TO
'F:\mastering_postgis\chapter06\earthquakes.csv' WITH DELIMITER ';' CSV
HEADER

The second query looks like this:

copy (select id, ST_AsText(geom) FROM
data_import.earthquakes_subset_with_geom) TO
'F:\mastering_postgis\chapter06\earthquakes_subset.csv' WITH CSV DELIMITER
'|' FORCE QUOTE * HEADER

Both produce a similar output, but this time it is logged in PgAdmin's query output pane
Messages tab:

Query returned successfully: 50 rows affected, 55 msec execution time.

It is worth remembering that COPY is executed as part of an SQL
command, so it is effectively the DB server that tries to write to a file.
Therefore, it may be the case that the server is not able to access a specified
directory. If your DB server is on the same machine as the directory that
you are trying to write to, relaxing directory access permissions should
help.

Exporting Spatial Data

[127]

Exporting vector data using pgsql2shp
pgsql2shp is a command-line tool that can be used to output PostGIS data into shapefiles.
Similarly to outgoing \COPY, it can either export a full table or the result of a query, so this
gives us flexibility when we only need a subset of data to be outputted and we do not want
to either modify the source tables or create temporary, intermediate ones.

pgsql2sph command line
In order to get some help with the tool just type the following in the console:

 pgsql2shp

The general syntax for the tool is as follows:

 pgsql2shp [<options>] <database> [<schema>.]<table>
 pgsql2shp [<options>] <database> <query>

Shapefile is a format that is made up of a few files. The minimum set is SHP, SHX, and
DBF. If PostGIS is able to determine the projection of the data, it will also export a PRJ file
that will contain the SRS information, which should be understandable by the software able
to consume a shapefile.

If a table does not have a geometry column, then only a DBF file that is the equivalent of the
table data will be exported.

Let's export a full table first:

pgsql2shp -h localhost -p 5434 -u postgres -f full_earthquakes_dataset
mastering_postgis data_import.earthquakes_subset_with_geom

The following output should be expected:

Initializing...
Done (postgis major version: 2).
Output shape: Point
Dumping: X [50 rows].

Exporting Spatial Data

[128]

Now let's do the same, but this time with the result of a query:

pgsql2shp -h localhost -p 5434 -u postgres -f full_earthquakes_dataset
mastering_postgis "select * from data_import.earthquakes_subset_with_geom
limit 1"

To avoid being prompted for a password, try providing it within the
command via the -P switch.

The output will be very similar to what we have already seen:

Initializing...
Done (postgis major version: 2).
Output shape: Point
Dumping: X [1 rows].

In the data we previously imported, we do not have examples that would manifest
shapefile limitations. It is worth knowing about them, though. You will find a decent
description at h t t p s ://e n . w i k i p e d i a . o r g /w i k i /S h a p e f i l e #L i m i t a t i o n s . The most
important ones are as follows:

Column name length limit: The shapefile can only handle column names with a
maximum length of 10 characters; pgsql2shp will not produce duplicate
columns, though if there were column names that would result in duplicates
when truncated, then the tool will add a sequence number.
Maximum field length: The maximum field length is 255; psql will simply
truncate the data upon exporting.

In order to demonstrate the preceding limitations, let's quickly create a test PostGIS dataset:

Create a schema if an export does not exist:

CREATE SCHEMA IF NOT EXISTS data_export;
CREATE TABLE IF NOT EXISTS data_export.bad_bad_shp (
 id character varying,
 "time" timestamp with time zone,
 depth numeric,
 mag numeric,
 very_very_very_long_column_that_holds_magtype character varying,
 very_very_very_long_column_that_holds_place character varying,
 geom geometry);
INSERT INTO data_export.bad_bad_shp select * from
data_import.earthquakes_subset_with_geom limit 1;
UPDATE data_export.bad_bad_shp

https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations
https://en.wikipedia.org/wiki/Shapefile#Limitations

Exporting Spatial Data

[129]

SET very_very_very_long_column_that_holds_magtype = 'Lorem ipsum dolor sit
amet, consectetur adipiscing elit. Fusce id mauris eget arcu imperdiet
tristique eu sed est. Quisque suscipit risus eu ante vestibulum hendrerit
ut sed nulla. Nulla sit amet turpis ipsum. Curabitur nisi ante, luctus nec
dignissim ut, imperdiet id tortor. In egestas, tortor ac condimentum
sollicitudin, nisi lacus porttitor nibh, a tempus ex tellus in ligula.
Donec pharetra laoreet finibus. Donec semper aliquet fringilla. Etiam
faucibus felis ac neque facilisis vestibulum. Vivamus scelerisque at neque
vel tincidunt. Phasellus gravida, ipsum vulputate dignissim laoreet, augue
lacus congue diam, at tempus augue dolor vitae elit.';

Having prepared a vigilante dataset, let's now export it to SHP to see if our SHP warnings
were right:

pgsql2shp -h localhost -p 5434 -u postgres -f bad_bad_shp mastering_postgis
data_export.bad_bad_shp

When you now open the exported shapefile in a GIS client of your choice, you will see our
very, very long column names renamed to VERY_VERY_ and VERY_VE_01. The content of
the very_very_very_long_column_that_holds_magtype field has also been truncated
to 255 characters, and is now Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Fusce id mauris eget arcu imperdiet tristique eu sed
est. Quisque suscipit risus eu ante vestibulum hendrerit ut sed nulla.
Nulla sit amet turpis ipsum. Curabitur nisi ante, luctus nec dignissim

ut.

For the sake of completeness, we'll also export a table without geometry, so we can be
certain that pgsql2shp exports only a DBF file:

 pgsql2shp -h localhost -p 5434 -u postgres -f a_lonely_dbf
mastering_postgis "select id, place from
data_import.earthquakes_subset_with_geom limit 1"

pgsql2shp gui
We have already seen the PgAdmin's GUI for importing shapefiles. As you surely
remember, the pgsql2shp GUI also has an Export tab.

If you happen to encounter difficulties locating the pgsql2shp GUI in
pgAdmin 4, try calling it from the shell/command line by executing
shp2pgsql-gui. If it is not recognized, try to locate the utility in your DB
directory under bin/postgisgui/shp2pgsql-gui.exe.

Exporting Spatial Data

[130]

In order to export a shapefile from PostGIS, go to the Plugins\PostGIS shapefile and DBF
loader 2.2 (version may vary); then you have to switch to the Export tab:

Exporting Spatial Data

[131]

It is worth mentioning that you have some options to choose from when exporting. They
are rather self-explanatory:

When you press the Export button, you can choose the output destination. The log is
displayed in the Log Window area of the exporter GUI:

Exporting vector data using ogr2ogr
We have already seen a little preview of ogr2ogr exporting the data when we made sure
that our KML import had actually brought in the proper data. This time we'll expand on the
subject a bit and also export a few more formats, to give you an idea of how sound a tool
ogr2ogr is.

Exporting Spatial Data

[132]

In order to get some information on the tool, simply type the following in the console:

ogr2ogr

Alternatively, if you would like to get some more descriptive info, visit
http://www.gdal.org/ogr2ogr.html.

You could also type the following:

ogr2ogr -long-usage

The nice thing about ogr2ogr is that the tool is very flexible and offers some options that
allow us to export exactly what we are after. You can specify what data you would like to
select by specifying the columns in a -select parameter. -where parameter lets you
specify the filtering for your dataset in case you want to output only a subset of data.
Should you require more sophisticated output preparation logic, you can use an -sql
parameter.

This is obviously not all there is. The usual gdal/ogr2ogr parameters are available too. You
can reproject the data on the fly using the -t_srs parameter, and if, for some reason, the
SRS of your data has not been clearly defined, you can use -s_srs to instruct ogr2ogr what
the source coordinate system is for the dataset being processed.

There are obviously advanced options too. Should you wish to clip your dataset to a
specified bounding box, polygon, or coordinate system, have a look at the -clipsrc, and -
clipdst parameters, and their variations.

The last important parameter to know is -dsco-dataset creation options. It accepts values in
the form of NAME=VALUE. When you want to pass more than one option this way, simply
repeat the parameter. The actual dataset creation options depend on the format used, so it is
advised that you consult the appropriate format information pages available via the
ogr2pgr website.

Exporting KML revisited
You may remember that the last time we exported KML, our focus was to only get the data
out of the database so we can check whether our import had actually been successful. This
time we'll issue a similar command, but with one important change - we'll specify the name
field and the description field for the output KML.

http://www.gdal.org/ogr2ogr.html

Exporting Spatial Data

[133]

A full format information page can be found at
http://www.gdal.org/drv_kml.html.

ogr2ogr -f "KML" earthquakes_from_postgis.kml PG:"host=localhost port=5434
user=postgres dbname=mastering_postgis" -t_srs EPSG:4326 -dsco NameField=id
-dsco DescriptionField=place data_import.earthquakes_subset_with_geom

If you opened the exported KML, this time you will have noticed that the object icons have
their names displayed, and when a pop-up is opened, the name and description now come
from the columns specified:

If an output format supports multiple layers, and KML does indeed, it is possible to export
multiple data tables to one output file - for example:

ogr2ogr -f "KML" greenwich.kml PG:"host=localhost port=5434 user=postgres
dbname=mastering_postgis" -s_srs EPSG:900913 -t_srs EPSG:4326 -dsco
NameField=name -dsco DescriptionField=tags public.planet_osm_line
public.planet_osm_point

http://www.gdal.org/drv_kml.html

Exporting Spatial Data

[134]

Our Greenwich KML should look like this, when opened in Google Earth:

Exporting SHP
We have already learned how to export SHP from PostGIS. We'll use SHP as the output
format again, this time to show how to export a subset of data using ogr2ogr and how to re-
project it during the export:

ogr2ogr -f "ESRI Shapefile" ne_coastline_islands PG:"host=localhost
port=5434 user=postgres dbname=mastering_postgis" -t_srs EPSG:3857 -where
"scalerank=1" data_import.ne_coastline

The preceding command extracts the islands off the 110M Natural Earth Coastline dataset,
transforms it to EPSG 3857 (aka 900913), and exports the data as a shapefile. It is worth
noting that because the shapefile is a format that is made up of a few files, the files were
exported to a directory named ne_coastline_islands, and the file names are actually
named after a schema and table we exported from, in this case
data_import.ne_coastline.*. If the output file name was specified as
ne_coastline_islands.shp, ogr2ogr would not create a directory for us and the
exported files named ne_coastline_islands.*.

Exporting Spatial Data

[135]

SHP is the default output format of ogr2ogr, so there is no need to
specify it explicitly.

Let's rewrite the preceding command a bit using the -select parameter, so we can see it in
action:

ogr2ogr ne_coastline_with_select_param PG:"host=localhost port=5434
user=postgres dbname=mastering_postgis" -select "scalerank,featurecla" -
t_srs EPSG:3857 -where "scalerank=1" data_import.ne_coastline

The result should be exactly the same in terms of exported data; we just got there using a bit
of a different path, this time specifying the columns explicitly.

Similarly to pgsql2shp, if there is no geometry to output, ogr2ogr will only output a DBF
when exporting to SHP :

ogr2ogr -f "ESRI Shapefile" ne_coastline_data_only_with_sql_param
PG:"host=localhost port=5434 user=postgres dbname=mastering_postgis" -sql
"SELECT gid, scalerank, featurecla FROM data_import.ne_coastline;"
data_import.ne_coastline

This time, ogr2ogr has also created an output directory for us. The DBF file name is not
that obvious initially, but it makes perfect sense: sql_statement. You have surely noticed
the presence of the -sql parameter that was used to customize the output content.

Exporting MapInfo TAB and MIF
Once you have exported a few datasets using ogr2ogr, you can see that exporting to other
formats is a very similar process. The most important thing is to remember to consult the
data set creation options for the format-specific options that may affect the export. In this
case, we'll use the -dsco FORMAT in order to output the MIF in our second example. We
will first deal with the TAB export (made of four files: DAT, ID, MAP, and TAB):

ogr2ogr -f "MapInfo File" greenwich_park_1.tab PG:"host=localhost port=5434
user=postgres dbname=mastering_postgis" public.planet_osm_line

Now we'll export to MIF (composed of two files: MIF and MID):

ogr2ogr -f "MapInfo File" greenwich_park_2.mif PG:"host=localhost port=5434
user=postgres dbname=mastering_postgis" -dsco FORMAT=MIF
public.planet_osm_point

Exporting Spatial Data

[136]

Exporting to SQL Server
Exporting data from a database to a file that can be shared is surely a rather common task,
and ogr2ogr is a great tool for it. If that is not enough, you can also easily use it to transfer
data from one database to another. Here is how to transfer data from PostGIS to SQL
Server:

ogr2ogr -f "MSSQLSpatial" MSSQL:"
server=CM_DOM\MSSQLSERVER12;database=mastering_postgis;trusted_connection=y
es;" PG:"host=localhost port=5434 user=postgres dbname=mastering_postgis" -
sql "SELECT name, ST_SetSRID(ST_Point(easting, norting), 27700) as geom
FROM data_import.osgb_poi" -s_srs EPSG:27700 -t_srs EPSG:4326 -lco
GEOM_TYPE=GEOMETRY -nln osgb_poi

The preceding command does a few things, so let's have a closer look at it. Basically, it
transfers data from a PostGIS-enabled PostgreSQL databasen defined in the PG connection
string to a Microsoft SQL Server spatial databasen defined in the MS SQL connection string.

I am using an SQL-Server-trusted connection here - this means my OS user
is recognized by the database, so I do not have to pass the credentials. In
case I wanted to do it anyway, I would use the UID and PWD parameters
with the appropriate data, as we saw in the Foreign Data Wrappers section.

Data is extracted using an SQL command and passed to a table in another database; data is
also transformed from EPSG:27700 (OSGB 1936 / British National Grid) to EPSG:4326.
Because a select query is used to extract the data, a -nln parameter allows us to specify the
output table name so that it does not become sql_statement. I have also used a
GEOM_TYPE layer creation option to specify that I was after the GEOMETRY type for my
spatial data (GEOMETRY is the default, but I wanted to highlight this option).

It is worth noting that the data transferred from PostGIS is not spatial - it
gets spatialized in the select query by using the ST_Point and
ST_SetSRID PostGIS methods.

ogr2ogr GUI
We have seen the ogr2gui already in the Chapter 1, Importing Spatial Data. Since its
interface is self-explanatory, I will not really elaborate on it here, but instead, as a
reminder, I'll provide the following screenshot:

Exporting Spatial Data

[137]

While for some the ogr2logui may seem a nice helper, it has some limitations, and in
order to fully utilize the ogr2ogr goodies, one has to use it in a command-line
environment.

Exporting data using GIS clients
Exporting data using GIS clients is no different to what we have seen already: simply
connect to a database, read the data, and then output to a format of your choice. Once a
connection can be established, the output formats are totally up to the client used.

In this section, we'll use two GIS clients:QGIS and Manifold.

Exporting Spatial Data

[138]

Exporting data using QGIS
In order to connect to PostGIS from QGIS, go to Database\DB Manager and pick DB
Manager. DB Manager is a very powerful tool that lets one not only simply connect and
read data from a database, but also manage the database objects, such as tables, their
columns, constraints, and indexes. In this scenario, we will not go into the details of how to
manage a database using QGIS DB Manger, but instead we will focus on the task and
simply use it to get to the data we want exported.

First, let's make sure we can connect to our database. When you expand the database node,
you will see the schemas present in the database:

If you happen to not have any connections available, you may add one by using the Add
PostGIS Table(s) tool, as shown in the following screenshot:

Exporting Spatial Data

[139]

The nice thing about DB Manager is that it allows you to preview the data not only in a
tabular form, but also in its spatial representation:

Exporting Spatial Data

[140]

You have two options now:

You can use the export button in the DB Manager's toolbar (the one with the
arrow pointing right or to the top in the newer QGIS versions) and it will let you
output the vector to SHP. At the time of writing (QGIS Las Palmas, 2.18.x), trying
to export a PgRaster table to a file results in an error. I guess it will be fixed at
some point.
You can right-click a layer you are interested in and choose the Add to canvas
option. This will bring the linked database data into QGIS's workspace.

Once the data is in QGIS, our export options are much, much broader. We can export to any
vector format supported by QGIS to write output. In order to export vector data from QGIS,
simply right-click the layer to display its context menu and choose the Save as option, and
you will be presented with the vector data export dialog. As you see, you now have more to
choose from:

Exporting Spatial Data

[141]

The very same approach can be applied to PgRaster tables. Simply bring the table to the
QGIS workspace by right-clicking the table in the manager and choosing Add to canvas.
Once in QGIS, our export options are way more flexible:

Although not mentioned earlier, DB Manager could also be used to import
the data to the PostGIS database. The process is very similar - whatever we
have in the QGIS workspace that is an output table will be listed in an
appropriate dropdown of DB Manager's import window.

Exporting Spatial Data

[142]

Exporting data using Manifold.
The process of connecting to a database in Manifold is similar to the one we saw in QGIS.
Manifold uses a tool called Database Console (Tools\Database Console) where you can
define your data source connection details and then connect to the data source:

In order to perform the actual export, one needs to either import the data to Manifold's
workspace or link it. Once done, right-clicking on a layer in the Project Manager brings in a
context menu where an Export option is available. Through it, an export prompt is
displayed that lets one configure the export parameters.

Exporting Spatial Data

[143]

At the time of writing, it is not possible to consume PgRaster in Manifold,
although future versions of the software are likely to happily connect to
the PgRaster data too.

Outputting rasters using GDAL
We have seen ogr2ogr in action already, and now it is time to give two GDAL tools a spin:
gdal_translate and gdalwarp. The former is a translation utility that can change the
format of a raster datasource while the latter is a reprojection utility. Therefore, in order to
extract a reprojected raster from a PostGIS database, we need to perform two steps:

Extract the raster using gdal_translate1.
Perform a reprojection using gdalwarp2.

In order to get some help with both utilities, simply type the following in the console:

gdal_translate

You could also use the following:

gdalwarp

The most important parameters of gdal_translate for our scenario are:

-of: Specifies the output format (use gdal_translate -formats to obtain
information on the supported formats).
-outsize xsize[%] ysize[%]: Specifies the output raster size. It can be
expressed in pixels or a percentage. If it is not used 100%, then the original size is
assumed
PG (PgSQL connection opts): PgSQL connection options. It is possible to pass a
more complex where clause using a command line where you switch to ogrinfo.
where: Filtering using a where clause.
-projwin upper left X, upper left Y, lower right X, lower right

Y: Provides a means for clipping the output raster using projected coordinates. If
for some reason you prefer using pixel coordinates, use the -srcwin parameter.

Exporting Spatial Data

[144]

So, let's export our Natural Earth raster to GeoTiff first, making sure that we export the top-
right section and that we shrink it by half on the way:

gdal_translate PG:"host=localhost port=5434 user=postgres
dbname=mastering_postgis schema=data_import table=gray_50m_partial
where='filename=\'gray_50m_partial_bl.tif\'' mode=2" -of GTiff -outsize 50%
50% gray_50m_partial_small.tiff

You should see similar output to the following:

Input file size is 5400, 2700
0...10...20...30...40...50...60...70...80...90...100 - done.

The following is taken from the PostGIS documentation: The mode=2 is
required for tiled rasters and was added in PostGIS 2.0 and GDAL 1.8 drivers.
This does not exist in GDAL 1.7 drivers.

The where clause can also contain spatial filtering. The following command exports a tile
that intersects with some declared bounds - in this case, it's roughly Poland's bounding box:

gdal_translate PG:"host=localhost port=5434 user=postgres
dbname=mastering_postgis schema=data_import table=gray_50m_partial
where='ST_Intersects(rast, ST_MakeEnvelope(14,49,24,55,4326))' mode=2" -of
GTiff -outsize 50% 50% gray_50m_partial_small.tiff

Although this example uses an ST_Intersects function, it does not clip the raster to the
bounds used. Instead, it just picks a tile that intersects them. However, we still have some
options to clip a raster, using, for example, the aforementioned -projwin parameter. To
expand on the previous example, let's now crop the territory of Poland out of the larger
raster:

gdal_translate PG:"host=localhost port=5434 user=postgres
dbname=mastering_postgis schema=data_import table=gray_50m_partial
where='ST_Intersects(rast, ST_MakeEnvelope(14,49,24,55,4326))' mode=2" -of
GTiff -projwin 14 55 24 49 poland.tiff

Should you require some more sophisticated filtering or better control
over your output, you can use a view or a temporary table to prepare the
data. Unfortunately, with GDAL we cannot issue an SQL select query as
we were able to do with ogr2ogr.

Exporting Spatial Data

[145]

Having exported a raster to a file, changing its projection is now a formality. Let's reproject
our Poland raster to EPSG:2180 - Polish Coordinate System 92:

gdalwarp -s_srs EPSG:4326 -t_srs EPSG:2180 poland.tiff poland_2180.tiff

Should you need to adjust the resampling method when using gdalwarp, you can do so
using the -r parameter. You could also use gdalwarp to crop a raster; use a -te xmin
ymin xmax ymax to achieve this.

Outputting raster using psql
When you read through the PostGIS documentation carefully, you might find a really short
section on using psql to export rasters. Basically, psql does not provide the functionality to
easily output binary data, so the approach here is a bit hackish, and relies on the large object
support in PostgreSQL (it is worth noting, though, that large object support is considered
obsolete in the PgSQL documentation). The steps required to export a raster this way are as
follows:

Create a large object
Output the raster data as bytea
Open the large object and write the output bytea
Export the large object
Unlink it to clean the resources

First, let's make this work in interactive psql mode. Type the following in psql, once
connected to our mastering_postgis database:

select
 loid,
 lowrite(lo_open(loid, 131072), gtiff) as bytesize
from (
 select
 lo_create(0) as loid,
 ST_AsGDALRaster(rast, 'GTiff') as gtiff
 from (
 select
 ST_Union(rast) as rast
 from
 data_import.gray_50m_partial
 where
 filename = 'gray_50m_partial_bl.tif'
) as combined
) as gdal_rasterised;

Exporting Spatial Data

[146]

You should get a similar output to the following:
 loid | bytesize
--------+----------
 145707 | 14601978
(1 row)

If you happen to get errors mentioning the GDAL driver's loading
problems, try enabling it by using SET
postgis.gdal_enabled_drivers = 'ENABLE_ALL';.

Once you know your large object identifier, you can export it:

\lo_export 145707
'F:/mastering_postgis/chapter06/gray_50m_partial_bl_psql_interactive.tif'

The output will just be the following:

lo_export

Finally, we'll release the large object storage:

SELECT lo_unlink(145707);

The output should be as follows:

lo_unlink

 1
 (1 row)

I am purposefully not explaining the preceding code in detail because we will use its
variation to perform the very same operation in one go. To do this, we can put the previous
code into one SQL (you'll find the code in the chapter resources):

--Step 1: prepare the data for export

--Note: read this query starting at the inner most sql

--4. store the metadata in a temp table, so it can be used later to drive
the xport;
drop table if exists data_export.psql_export_temp_tbl;
create table data_export.psql_export_temp_tbl as
--3. open large object for writing, and write to it the GeoTiff data
prepared at lvl 2
select
 loid,
 lowrite(lo_open(loid, 131072), gtiff) as bytesize --pen large object in

Exporting Spatial Data

[147]

wrtie mode, write gtiff data to it; write outputs the byte size
 --note: 131072 is a decimal value of the INV_WRITE flag hex value of
0x00020000 (see libpq-fs.h for details)
from (
 --2. create a large object, so it can be written to later and prepare
GeoTiff binary data
 select
 lo_create(0) as loid, --note the param here is 'mode' which is unused
and ignored as of pgsql 8.1 but left for backwards compatibility
 ST_AsGDALRaster(rast, 'GTiff') as gtiff
 from (
 --1. extract the gray_50m_partial_bl raster tiles and union them back
into one raster
 select
 ST_Union(rast) as rast
 from
 data_import.gray_50m_partial
 where
 filename = 'gray_50m_partial_bl.tif'
) as combined
) as gdal_rasterised;

--step 2: export the data

select lo_export((select loid from data_export.psql_export_temp_tbl limit
1), 'F:\mastering_postgis\chapter06\gray_50m_partial_bl.tif');

--step 3: cleanup, cleanup, everybody cleanup...
--
--release large object resources
select lo_unlink((select loid from data_export.psql_export_temp_tbl limit
1));
--drop temp table
drop table data_export.psql_export_temp_tbl;

The preceding code uses a temporary table to save some large object data, most importantly
the large object identifier that is next used to perform the actual export and cleanup. This is
because otherwise we would not be able to access the large file by its ID, and the export
function would fail.

You can now execute the code in psql:

psql -h localhost -p 5434 -U postgres -d mastering_postgis -f
psql_export_raster.sql

Exporting Spatial Data

[148]

The output should be similar to the following:

DROP TABLE
SELECT 1
 lo_export

 1
(1 row)

 lo_unlink

 1
(1 row)

DROP TABLE

Obviously, the very same code could be executed in PgAdmin too.

Use ST_GDALDrivers() to get a list of the supported drivers, should you
wish to export to other formats.
We have not only done some hocus-pocus to export a raster off our
PostGIS database; we have also used a PostGIS ST_AsGDALRaster
function to output a raster to a desired format.

Exporting data using the PostgreSQL
backup functionality
In the chapter on data importing techniques, I mentioned that the built-in PostgreSQL
backup utilities can also be used as data transfer tools. It does, of course, depend on the
scenario we are working on, but in many cases passing data as a database backup file may
be a valid and reliable solution.

Obviously, saving a backup does not output the data in a form
consumable by other software packages - only by Postgres itself.

Exporting Spatial Data

[149]

pg_dump is the utility that provides the database backup functionality. In order to get some
help with it, type the following in the command line:

pg_dump --help

A great thing about pg_dump is that it allows for great flexibility when backing up a
database. One can dump a whole database, a single schema, multiple schemas, a single
table, or multiple tables; it is even possible to exclude specified schemas or tables.

This approach is great, for example, for scenarios where the main database should remain
within a private network and a set of automated tasks performs the database backup, file
transfer, and database restore on a web-exposed database server.

A basic example of backing up a whole database could look like this:

pg_dump -h localhost -p 5434 -U postgres -c -F c -v -b -f
mastering_postgis.backup mastering_postgis

Backing up a schema is very similar:

pg_dump -h localhost -p 5434 -U postgres -c -F c -v -b -n data_import -f
data_import_schema.backup mastering_postgis

A single table is backed up like this:

pg_dump -h localhost -p 5434 -U postgres -t
data_import.earthquakes_subset_with_geom -c -F c -v -b -f
earthquakes_subset_with_geom.backup mastering_postgis

Summary
There are many ways of getting the data out of a database. Some are PostgreSQL specific,
some are PostGIS specific. The point is that you can use and mix any tools you prefer. There
will be scenarios where simple data extraction procedures will do just fine; some other cases
will require a more specialized setup, SQL or psql, or even writing custom code in external
languages. I do hope this chapter gives you a toolset you can use with confidence in your
daily activities.

We have not touched upon exposing the data through web services - another chapter is
fully devoted to this topic, so stay tuned.

6
ETL Using Node.js

In this chapter, we will focus on ETL operations. ETL stands for Extract-Transform-Load,
and its name pretty much describes what we are about to do.

As a matter of fact, we are already familiar with loading the data, as well as extracting it; we
also did some data transformations when we reprojected datasets, made flat data spatial,
exported a subset of a dataset, or cropped a portion of a raster off a larger dataset. Indeed,
we have done ETL already, although our approach involved some manually executed tasks,
so it is easy to imagine how labor intensive and therefore time consuming our operations
would become if we had to repeat them many times.

Not surprisingly, it is possible to make our lives easier with just a bit of scripting. Over the
next few pages, we will define some hypothetical workflows, and then use Node.js to
automate and chain the required operations.

We could obviously use any other programming language, but because
we're going to do some WebGIS-related stuff a bit later, using JavaScript
seemed more natural.

The workflows presented will not necessarily be 100% real-world examples, but they will
touch on some processes I tend to encounter more or less frequently.

It is important to stress that there are some really well-equipped ETL tools
out there, both commercial and open source. However, the point of this
chapter is not to compete with them, but show how some relatively easy-
to-use techniques can bring some more muscle to our already powerful
PostGIS database.

ETL Using Node.js

[151]

One can think of ETL as mainly focused on local or database resources. This is, indeed,
often the case, but basically any data processing that leads to the creation of a new dataset,
even a simple data projection onto another model, can be safely named a transformation.
And since we usually also have to read and write the data, we do the E and L of ETL
anyway. ETL does not always have to indicate heavy data lifting operations. Also, the
sequence does not always have to be E->T->L; some steps are not always implicit (for
example, data extraction from a PostGIS to SHP may result in some data being truncated
and therefore transformed, regardless of our intent).

We will focus on a couple of examples and go through the following steps:

Set up Node.js
Handshake with a database using Node.js's PgSQL client
Retrieve and process JSON data
Geocode address data
Consume WFS data
Output GeoJSON
Output TopoJSON

Setting up Node.js
Before we move on to some specific examples, Node.js must be installed. If you happen to
not have Node.js set up already, you can obtain installation instructions and all the
necessary resources from https://nodejs.org/.

In order to verify the installation, simply type the following in the console:

 node -v

At the time of writing, the LTS (long term support) version was 6.9.1.

The source code of the examples presented in this chapter can be found in
the appropriate chapter resources.

The Node.js examples presented in this chapter will be rather simplistic. The point of the
chapter is not to create bullet-proof Node.js modules, but rather to present and discuss the
ideas and code them in such a way that our code is self-explanatory and easy to read and
understand.

https://nodejs.org/

ETL Using Node.js

[152]

Since we will be editing simple JS files that are just text files, you can use whatever editor
you find suitable for the task. However, I suggest having a look at Visual Studio Code - it is
a product from Microsoft, which may make it less approachable for some, but it is a worthy
piece of software. It is an easy-to-use, cross-platform editor that not only lets you factor
your code, but also has a really good debugger that is a life saver when the code written
does not want to work from the beginning. Not to mention the fact that you're not limited to
JavaScript, but can also code and debug in other languages, such as C#, C++, F#, Go, Python,
PHP, TypeScript, and many more.

Making a simple Node.js hello world in the
command line
Let's start with a simple Hello world. We will just log a message to the console.

First, we need to create a Node.js workspace, and this is done by executing the following in
the code destination folder:

 npm init

You will have to provide some further information on the module you are about to create. If
you prefer npm populating the default values for you, just issue the following command:

 npm init -f

If you choose the -f parameter, it will create a package and force the default settings. The
package name should be taken from the folder name the package is created within.

At this stage, our Node.js package has been created, so let's have a look at the
package.json. Some basic information on the package can be found inside this file, as well
as the package entry point, which in our case is the default index.js.

We can now start writing the code. Let's create an index.js file so we have a placeholder
for the code we are about to write. In this example, the code will be very simple indeed:

console.warn('Hello world!');

Once the file has been saved, we can execute it. In order to do so, simply type the following
in the console:

 node index.js

ETL Using Node.js

[153]

The output should not really surprise us:

 Hello world!

The source code for this example is available in the chapter's resources in
the code/01_hello_world directory.

Making a simple HTTP server
Since we will use some WebGIS a bit later, let's make a web Hello world too. For this, a
new project should be created using npm. Once ready, we will need an additional HTTP
module to create a web server. This is a default Node.js module, so we just need to require
it in our code:

const http = require('http');
const server = http.createServer((req, res) => {
 console.warn('Processing request...');
 res.end('Hello world!');
});
const port = 8080;
server.listen(port, () => {
 console.warn('Server listening on http://localhost:%s', port);
});

In the preceding code, we bring in the HTTP module via a require method and assign it to
a variable. Next, a server is created - whenever it receives a request it logs a message to the
console and replies with Hello world!. The final step is making the server listen on port
8080.

When you now launch the script via node index.js, you should see similar output in the
console:

 Server listening on http://localhost:8080

Whenever you navigate to http://localhost:8080, you should see a Hello
world! message in your browser and the following in the console:

 Processing request...

ETL Using Node.js

[154]

The source code for this example is available in the chapter's resources in
the code/02_hello_world_web directory.

Handshaking with a database using Node.js
PgSQL client
Before doing some more fancy stuff, we should learn how to talk to our PostgreSQL
database. In order to do so, once an appropriate project is created, we need to install a DB
client. I used node-PostgreSQL:

 npm install pg --save

npm is the Node.js package manager, a utility that helps managing node
packages: creating them, installing remote package, and so on. You will
find more information at https://docs.npmjs.com/.

The code should be created in an index.js file:

const pg = require('pg');

//init client with the appropriate conn details
const client = new pg.Client({
 host: 'localhost',
 port: 5434,
 user: 'postgres',
 password: 'postgres',
 database: 'mastering_postgis'
});

//connect to the db
client.connect(function(err){
 if(err){
 console.warn('Error connecting to the database: ', err.message);
 throw err;
 }

 //once connected we can now interact with a db
 client.query('SELECT PostGIS_full_version() as postgis_version;',
 function(err, result){
 if(err){

https://docs.npmjs.com/

ETL Using Node.js

[155]

 console.warn('Error obtaining PostGIS version: ', err.message);
 throw err;
 }

 //there should be one row present provided PostGIS is installed. If
 not, executing query would throw.
 console.warn(result.rows[0].postgis_version);

 //close the connection when done
 client.end(function(err){
 if(err){
 console.warn('Error disconnecting: ', err.message);
 throw err;
 }
 });
 });
});

In short, the preceding code brings in a node-postgres package, creates a DB client with
the appropriate connection details, and, once connected, it retrieves PostGIS version
information and prints it to the console.

When you run this code via node index.js, you should see a similar output to the
following:

POSTGIS="2.2.1 r14555" GEOS="3.5.0-CAPI-1.9.0 r4090" SFCGAL="1.2.2"
PROJ="Rel. 4.9.1, 04 March 2015" GDAL="GDAL 2.0.1, released 2015/09/15"
LIBXML="2.7.8" LIBJSON="0.12" TOPOLOGY RASTER

The source code for this example is available in the chapter's resources in
the code/03_db_handshake directory.

As you may have noticed, the asynchronous nature of Node.js requires us to await callbacks
or subscribe to events in order to process the results of the functions called. This quickly
becomes callback hell if we need to perform some more logic, and because of that, since we
will now wrap our functions into promises, we can execute the code and avoid overnesting
callbacks. Consider the following code:

var f1 = function(p1, p2){
 return new Promise((resolve, reject)=>{
 setTimeout(()=>{
 if(!p1){
 reject('whoaaa, f1 err - no params dude!');
 }
 else {

ETL Using Node.js

[156]

 console.warn(`f1 processig following params: ${p1},
 ${p2}`);
 resolve({p1: 'P3', p2: 'P4'});
 }
 }, 500);
 });
}

var f2 = function(input){
 return new Promise((resolve, reject)=>{
 setTimeout(()=>{
 try {
 console.warn(`f2 params are: ${input.p1}, ${input.p2}`);
 }
 catch(err){
 reject(err.message);
 }
 }, 500);
 });
}

//f1 & f2 executed one by one
f1('p1', 'p2').then(f2);

//f1 throws, execution goes to the next catch and since the chain ends
there, execution stops
f1().then(f2).catch(err => {
 console.warn(`Uups an error occured: ${err}`);
});

//f1 throws, err is processed in the next catch, and the execution
continues to throw in f2 that is caught by the last catch
f1().catch(err => console.warn(`Uups an error occured:
${err}`)).then(f2).catch(err => console.warn(`Uups an error occured:
${err}`));

In the preceding code, we define two functions that do not return a potentially expected
value, but a Promise object instead. Because of that, we can chain them together so that
once one is resolved another one is called. In a scenario where a Promise object does not
resolve, the very next catch function in the chain is called. Unless a catch function throws,
the remaining <then> after catch is executed.

The source code for this example is available in the chapter's resources in
the code/04_promises directory.

ETL Using Node.js

[157]

While some further reading on promises may be beneficial, the basic ideas behind promises
are as follows:

A promise represents a value that can be handled at any time in the future. The
consumer is guaranteed to receive that value regardless of the time a handler has
been registered.
A promise value is immutable.

As we go forward, promises will be used to simplify our code and make it more readable.

Retrieving and processing JSON data
Let's imagine our company provides data services for local governments. The company
does not own or generate data; its services are mainly based on aggregating data from
external sources and providing them in a digested form. One of the services offered is based
on weather data, and provides early alerts when weather forecasts extend certain
configured parameters.

In this example, we will simulate services for Polish local government and use the following
data sources:

The third level of administrative boundaries of Poland
OpenWeatherMap data services

The administrative boundaries simulate our own data source from which we will be
generating weather alerts, while OpenWeatherMap is a weather data service provider.

Importing shapefiles revisited
Let's first prepare our company database. In order to do so, we first need to obtain the
boundaries of the administrative divisions of Poland. The official data can be downloaded
from http://www.codgik.gov.pl/index.php/darmowe-dane/prg.html, but this dataset is
quite large and requires some further processing. Instead, we will use a level
three administrative boundaries data extract based on the official data and provided by the
folks at GIS Support (http://www.gis-support.pl/downloads/gminy.zip).

http://www.codgik.gov.pl/index.php/darmowe-dane/prg.html
http://www.gis-support.pl/downloads/gminy.zip

ETL Using Node.js

[158]

We already know how to load shapefiles using different techniques, so let's take a little
detour before we start reading the JSON data and load our shapefile using Node.js. The
process will look like this:

Download the data.1.
Extract the files.2.
Make sure our database has an appropriate schema.3.
Import the shapefile data.4.

The source code for this example is available in the chapter's resources in
the code/05_importing_shp directory.

Once our module project has been created, we need some extra modules that will simplify
our work:

npm install pg --save
npm install unzip --save

Let's code our first step:

/**
 * downloads a file
 */
const download = function(url, destination){
 return new Promise((resolve, reject) => {

 console.log(`Downloading ${url} to ${destination}...`);

 let file = fs.createWriteStream(destination);
 let request = http.get(url, function(response){
 response.on('data', (chunk)=>{ progressIndicator.next() });
 response.pipe(file);
 file.on('finish', () => {
 progressIndicator.reset();
 console.log("File downloaded!");
 file.close();
 resolve(destination);
 });
 }).on('error', (err)=>{
 fs.unlink(destination);
 reject(err.message);
 });
 });
}

ETL Using Node.js

[159]

This is a simple download function that downloads a specified file off the Internet and
saves it under the specified file name.

If you happen to experience problems downloading the data, you should
find it under the data/05_importing_shp directory.

Once we have a ZIP archive locally, we need to extract it in order to import our shapefile to
the database:

/**
 * unzips a specified file to the same directory
 */
const unzipFile = function(zipFile){
 return new Promise((resolve, reject) => {
 console.log(`Unzipping '${zipFile}'...`);

 //Note: the archive is unzipped to the directory it resides in
 fs.createReadStream(zipFile)
 .on('data', (chunk)=>{ progressIndicator.next() })
 .pipe(unzip.Extract({ path: path.dirname(zipFile) }))
 //when ready return file name, so can use it to load a file to
 the db...
 .on('close', ()=>{
 progressIndicator.reset();
 console.log('Unzipped!');
 resolve(zipFile.replace('zip', 'shp')); //Note: in this
 case shp file name is same as the archive name!
 });
 });
}

At this stage, we should have our shapefile extracted and ready to be imported. However,
before we initialize the import, let's make sure our schema exists. For this, we will just try to
create it, if does not exist:

/**
 * checks if database is ready for data import
 */
const dbCheckup = function(shp){
 return new Promise((resolve, reject) => {
 console.log('Checking up the database...');

 let client = new pg.Client(dbCredentials);

 client.connect((err) => {

ETL Using Node.js

[160]

 if(err){
 reject(err.message);
 return;
 }

 client.query(`CREATE SCHEMA IF NOT EXISTS ${schemaName};`,
 (err, result) => {
 if(err){
 reject(err.message);
 }
 else {
 client.end();
 console.log('Database ready!');
 resolve(shp);
 }
 });
 });
 });
}

Since we got here, it looks like we are ready to import the shapefile to the database. In order
to do so, we will simply call ogr2ogr and pass it the parameters we are after, as we did in
the data import chapter:

/**
 * loads a shapefile to a database
 */
const dbLoad = function(shp){
 return new Promise((resolve, reject) => {
 console.log('Loading shapefile...');
 let dbc = dbCredentials;
 let cmd = `ogr2ogr -f "PostgreSQL" PG:"host=${dbc.host}
 port=${dbc.port} user=${dbc.user} dbname=${dbc.database}" "${shp}"
 -t_srs
 EPSG:2180 -nlt PROMOTE_TO_MULTI -nln ${schemaName}.${tblName}
 -overwrite -lco GEOMETRY_NAME=geom`;

 console.log(`Executing command: ${cmd}`);

 exec(cmd, (err, stdout, stderr) => {
 if(err){
 reject(err.message);
 return;
 }
 console.log(stdout || stderr);
 resolve();
 });
 });

ETL Using Node.js

[161]

}

I used ogr2ogr in this example, but in fact I could well use psql in non-
interactive mode or shp2pgsql.
Also, you may have noticed the usage of the -nlt PROMOTE_TO_MULTI
parameter. Our shapefile contains MultiPolygons, and since ogr2ogr
assumes a polygon geometry type by default when importing areas, it is
needed in order to avoid import errors for MultiPolygons.

At this stage, all the data should be present in the table, so a final step will be checking up
on the number of imported records:

/**
 * counts imported records
 */
const dbLoadTest = function(){
 return new Promise((resolve, reject) => {
 console.log('Verifying import...');

 let client = new pg.Client(dbCredentials);

 client.connect((err) => {
 if(err){
 reject(err.message);
 return;
 }

 client.query(`SELECT Count(*) as rec_count FROM
 ${schemaName}.${tblName};`, (err, result) => {
 if(err){
 reject(err.message);
 }
 else {
 client.end();
 console.log(`Imported ${result.rows[0].rec_count}
 records!`);
 resolve();
 }
 });
 });
 });
}

ETL Using Node.js

[162]

In order to execute the code we were patiently putting together, we will need to add the
following to our script:

//chain all the stuff together
download(downloadUrl, path.join(downloadDir, fileName))
 .then(unzipFile)
 .then(dbCheckup)
 .then(dbLoad)
 .then(dbLoadTest)
 .catch(err => console.log(`uups, an error has occured: ${err}`));

When you execute our script, the console output should be similar to the following:

Downloading http://www.gis-support.pl/downloads/gminy.zip to
F:\mastering_postgis\chapter07\gminy.zip...
File downloaded!
Unzipping 'F:\mastering_postgis\chapter07\gminy.zip'...
Unzipped!
Checking up the database...
Database ready!
Loading shapefile...
Executing command: ogr2ogr -f "PostgreSQL" PG:"host=localhost port=5434
user=postgres dbname=mastering_postgis"
"F:\mastering_postgis\chapter07\gminy.shp" -t_srs EPSG:2180 -nlt
PROMOTE_TO_M
ULTI -nln weather_alerts.gminy -overwrite -geomfield geom

Verifying import...
Imported 2481 records!

It is not hard to imagine that our hypothetical data provider delivers some specialized data
that we need to process in order to deliver value to our customers. If such a procedure
happens once a month, perhaps preparing the data manually will not be a problem. If it
needs to be executed more often, say once a day or every hour, the benefits of using a script
and a scheduled task that executes it at a specified interval (or on demand) become
immediately clear.

Consuming JSON data
Since we have our corporate database ready, we can focus on the defined problem. Let's try
to define the steps we need to take in order to complete our task:

Obtain the weather forecast.1.
Process the weather data and put it into the database.2.

ETL Using Node.js

[163]

Assign the weather forecasts to the administrative boundaries.3.
List the administrative units that meet a hypothetical alert watch.4.

Our company has decided to use a weather data provider called OpenWeatherMap. One
can access the data via an API, and quite a lot of information is accessible with free
accounts. One can also obtain data in bulk, though this requires a paid service subscription.
We are not forcing you to use a commercial account, of course; we will use some data
examples that are provided free of charge so potential users can familiarize themselves with
the output that is provided by the service.

In this example, we will play with a weather forecast with a 3 hour interval and a 4 day
timespan. The service provides fresh data every 3 hours, so it is easy to imagine how absurd
it would be to process this data manually.

An example dataset can be obtained from
http://bulk.openweathermap.org/sample/hourly_14.json.gz.

The source code for this example is available in the chapter's resources in
the code/06_processing_json directory.

Let's install some node modules used by this example:

npm install pg --save
npm install line-by-line --save

We saw how to download and unzip an archive in a previous example, so these steps are
skipped as there is no point in repeating them here (the source code does include the
download and unzip code, though).

Our data comes as gzip, so the unzipping logic is a bit different from what
we saw already; the node's zlib module is used instead.
If you happen to experience problems downloading the data, you should
find it under the data/06_processing_json directory.

http://bulk.openweathermap.org/sample/hourly_14.json.gz

ETL Using Node.js

[164]

Once we have downloaded and unzipped the data, we should have a look at what's inside.
Basically, each line is a JSON string with the following data (based on the actual content of
the JSON):

{
 city: {
 coord: {
 lat: 27.716667,
 lon: 85.316666
 },
 country: "NP",
 id: 1283240
 name: "Kathmandu",
 data: [
 ...
],
 time: 1411447617
 }
}

The data property contains the array of weather forecasts we are after. The weather forecast
object looks like this:

{
 clouds: {...},
 dt: 1411441200,
 dt_txt: '2014-09-23 03:00:00'
 main: {...},
 rain: {...},
 sys: {...},
 weather: {...},
 wind: {
 deg: 84.0077,
 speed: 0.71
 }
}

In our scenario, we will focus on the wind speed, which is why the other properties in the
preceding code are not detailed. The wind speed is expressed in m/s. We want to alert our
customers whenever the forecasted wind speed exceeds level 6 on the Beaufort scale (10.8
m/s).

We already mentioned that each line of the file is a valid JSON string. This means that we
can read the data line by line, without having to load all the file content to memory.

ETL Using Node.js

[165]

Let's read the data for Poland first:

/**
 * reads weather forecast json line by line
 */
const readJson = function(jsonFile){
 return new Promise((resolve, reject) => {
 console.log(`Reading JSON data from ${jsonFile}...`);

 let recCount = 0;
 let data = [];

 //use the line reader to read the data
 let lr = new lineReader(jsonFile);

 lr.on('error', function (err) {
 reject(err.message);
 });

 lr.on('line', function (line) {

 recCount ++;

 //we're spinning through over 10k recs, so updating
 progress every 100 seems a good choice
 if(recCount % 100 === 0){
 progressIndicator.next();
 }

 //parse string to json
 var json = JSON.parse(line);

 //and extract only records for Poland
 if(json.country === 'PL'){
 data.push(json);
 }
 });

 lr.on('end', function () {
 console.warn(`Extracted ${data.length} records out of
 ${recCount}.`)
 progressIndicator.reset();
 resolve(data);
 });
 });
}

ETL Using Node.js

[166]

At this stage, we have the records prefiltered, so we're ready to load them to a database. We
will load the data into two tables: one will hold the forecast pinpoint - basically this is the
city we obtained the forecast for, and the other table will hold the actual forecasts per city:

/**
 * loads weather forecast data to database
 */
const loadData = function(data){
 return new Promise((resolve, reject) => {
 console.log('Loading data to database...');

 let client = new pg.Client(dbCredentials);

 client.connect((err) => {
 if(err){
 reject(err.message);
 return;
 }

 //prepare querries - this will hold all of the sql so we
 can execute it in one go; the content will not be strings
 though but functions to execute
 let querries = [];

 //Table setup SQL - drop (so we're clean) and (re)create
 let tableSetup = executeNonQuery(client, `DROP TABLE IF
 EXISTS ${schemaName}.${tblWeatherPoints};
 DROP TABLE IF EXISTS ${schemaName}.${tblWeatherForecasts};
 CREATE TABLE ${schemaName}.${tblWeatherPoints} (id serial
 NOT NULL, station_id numeric, name character varying, geom
 geometry);
 CREATE TABLE ${schemaName}.${tblWeatherForecasts} (id
 serial NOT NULL, station_id numeric, dt numeric, dt_txt
 character varying(19), wind_speed numeric);
 `);

 querries.push(tableSetup);

 //data preparation - query functions with params to be applied
 to the executed sql commands
 for(let d of data){
 //weather forecast point
 querries.push(
 executeNonQuery(
 client,
 `INSERT INTO ${schemaName}.${tblWeatherPoints}
 (station_id, name, geom) VALUES($1,$2,
 ST_Transform(ST_SetSRID(ST_Point($3, $4),

ETL Using Node.js

[167]

4326),2180))`,
 [d.city.id, d.city.name, d.city.coord.lon,
 d.city.coord.lat]
)
);

 //weather forecasts
 let forecasts = [];
 let params = [];
 let pCnt = 0;
 for(let f of d.data){
 forecasts.push(`SELECT $${++pCnt}::numeric,
 $${++pCnt}::numeric, $${++pCnt}, $${++pCnt}::numeric`);
 params.push(d.city.id, f.dt, f.dt_txt, (f.wind || {})
 .speed || null);
 }

 querries.push(
 executeNonQuery(
 client,
 `INSERT INTO ${schemaName}.${tblWeatherForecasts}
 (station_id, dt, dt_txt, wind_speed)
 ${forecasts.join(' UNION ALL ')}`,
 params
)
);
 }

 //finally execute all the prepared query functions and wait for
 all to finish
 Promise.all(querries)
 .then(()=> {
 client.end();
 resolve();
 })
 .catch(err=>{
 try{
 client.end();
 }
 catch(e){}
 reject(typeof err === 'string' ? err : err.message);
 });
 });

 });
}

ETL Using Node.js

[168]

If you happened to load the data in QGIS, then at this stage, our imported datasets should
look like the following:

Our final step is getting the actual wind alerts. We'll do a bit more PostGIS stuff and use
Node.js to execute our query. Basically, the wind speed forecasts we downloaded are not
bad at all. However, there are some records with a wind speed greater than 10.8 m/s, and
this is will be our cut off wind speed (wind over 10.8 falls into level 6 of the Beaufort scale
and means strong breeze; this is when handling an umbrella becomes a challenge).

So let's think for a moment about what we have to do:

For each administrative unit, we need to assign the nearest weather station
We have to filter out stations with wind speed forecasts that fall into the Beaufort
6 category
We need to select the affected administrative units

ETL Using Node.js

[169]

We'll initially code the query in pure SQL, as it will be much easier to digest than the same
code expressed as a string in Node.js.

First, let's get a list of weather station IDs where the wind speed is forecasted to exceed our
cut off point:

select
 distinct on (station_id)
 station_id,
 dt,
 dt_txt,
 wind_speed
from
 weather_alerts.weather_forecasts
where
 wind_speed > 10.8
order by
 station_id, dt;

The preceding query selects the weather forecasts with wind speeds greater than the
mentioned 10.8 m/s and orders them by timestamp. Thanks to that, we can use distinct on
distinct on to pick the single station IDs with the more recent forecast.

Now, let's find out the nearest weather station for each administrative unit:

select
 distinct on (adm_id)
 g.jpt_kod_je as adm_id, p.station_id, ST_Distance(g.geom, p.geom) as
distance
from
 weather_alerts.gminy g, weather_alerts.weather_points p
where
 ST_DWithin(g.geom, p.geom, 200000)
order by
 adm_id, distance;

We use ST_Distance to calculate the distance between administrative units and weather
stations, and then order the dataset by distance. This query gets very slow the more data is
processed, so a limiting clause is used to discard weather stations that are farther than 200
km from an administrative unit (it is obvious that 200 km is way too large a range to
generate sensible weather alerts, but the idea remains similar and so we will use the test
data).

ETL Using Node.js

[170]

Finally, we need to join both queries in order to get a list of the affected administrative
units:

select
 f.*,
 adm.*
from
 (select
 distinct on (station_id)
 station_id,
 dt,
 dt_txt,
 wind_speed
 from
 weather_alerts.weather_forecasts
 where
 wind_speed > 10.8
 order by
 station_id, dt
) as f
 left join (select
 distinct on (adm_id)
 g.jpt_kod_je as adm_id, g.jpt_nazwa_ as adm_name,
 p.station_id, p.name as station_name, ST_Distance(g.geom,
 p.geom) as distance
 from
 weather_alerts.gminy g, weather_alerts.weather_points p
 where
 ST_DWithin(g.geom, p.geom, 200000)
 order by
 adm_id, distance
) as adm
 on adm.station_id in (select distinct f.station_id);

Once our SQL is operational, we need the final piece of code, and then we should be good
to go:

/**
 * generates wind alerts
 */
const generateAlerts = function(){
 return new Promise((resolve, reject) => {
 console.log('Generating alerts...');

 let client = new pg.Client(dbCredentials);

 client.connect((err) => {
 if(err){

ETL Using Node.js

[171]

 reject(err.message);
 return;
 }

 let query = `
select
 f.*,
 adm.*
from
 (select
 distinct on (station_id)
 station_id,
 dt,
 dt_txt,
 wind_speed
 from
 ${schemaName}.${tblWeatherForecasts}
 where
 wind_speed > 10.8
 order by
 station_id, dt
) as f

 left join (select
 distinct on (adm_id)
 g.jpt_kod_je as adm_id, g.jpt_nazwa_ as adm_name,
 p.station_id, p.name as station_name, ST_Distance(g.geom,
 p.geom) as distance
 from
 ${schemaName}.${tblAdm} g, ${schemaName}.${tblWeatherPoints}
 p
 where
 ST_DWithin(g.geom, p.geom, 200000)
 order by
 adm_id, distance
) as adm
 on adm.station_id in (select distinct f.station_id);`

 client.query(query, (err, result)=>{
 if(err){
 reject(err.message);
 }
 else {
 client.end();
 console.log(`Wind alerts generated for
 ${result.rows.length} administrative units!`);
 if(result.rows.length > 0){
 let r = result.rows[0];

ETL Using Node.js

[172]

 console.log(`The first one is:
 ${JSON.stringify(r)}`);
 }
 resolve();
 }
 });

 });

 });
}

Let's assemble the calls to the methods we have written and execute them:

//chain all the stuff together
download(downloadUrl, path.join(downloadDir, fileName))
 .then(gunzipFile)
 .then(readJson)
 .then(loadData)
 .then(generateAlerts)
 .catch(err => console.log(`uups, an error has occured: ${err}`));

The output should be similar to the following:

Downloading http://bulk.openweathermap.org/sample/hourly_14.json.gz to
F:\mastering_postgis\chapter07\hourly_14.json.gz...
File downloaded!
Unzipping 'F:\mastering_postgis\chapter07\hourly_14.json.gz'...
Unzipped!
Reading JSON data from F:\mastering_postgis\chapter07\hourly_14.json...
Extracted 50 records out of 12176.
Loading data to database...
Generating alerts...
Wind alerts generated for 92 administrative units!
The first one is:
{"station_id":"3081368","dt":"1411441200","dt_txt":"2014-09-23
03:00:00","wind_speed":"10.87","adm_id":"0204022","adm_name":"Jemielno","st
ation_name":"Wroclaw","distance": 53714.3452816274}

We have managed to transform a JSON weather forecast into a dataset with alerts for
administrative units. The next steps could be exposing weather alerts via a web service, or
perhaps sending out e-mails, or even SMSs.

ETL Using Node.js

[173]

Geocoding address data
Let's imagine that we have a potential customer database built upon yellow pages, with the
customer locations expressed as addresses. I guess that using yellow pages may not be the
best idea these days, but it makes a good starting point for this example.

We need to send our sales representatives to these addresses in order to establish
relationships with the new customers, but first we should assign the customers to proper
sales regions. Having seen St_Intersects in action already, searching for points in
polygons seems like a trivial task. We need to have point geoms for this though, and we'll
soon see how to go from addresses to geometry using some simple Node.js code.

Let's prepare our hypothetical new customers database first. We will reuse some data we
have seen already, namely the Ordnance Survey GB address points. We imported this data
in Chapter 1, Importing Spatial Data, and I assume you have not deleted the dataset already
- it should be in data_import.osgb_addresses.

The records seem to be spread quite nicely, so we will simply select 100 records where we
have a meaningful name and also where the building number is known:

--schema prepare / cleanup
create schema if not exists etl_geocoding;
drop table if exists etl_geocoding.customers;

--customers table
create table etl_geocoding.customers (
 id serial NOT NULL,
 name varchar,
 street varchar,
 street_no varchar,
 postcode varchar,
 town varchar,
 lon numeric,
 lat numeric,
 geom geometry,
 geocoded boolean
);

--get some hypothethical customers
insert into etl_geocoding.customers (
 name,
 street,
 street_no,
 postcode,
 town,
 geocoded

ETL Using Node.js

[174]

)

select organisation_name, thoroughfare, building_number, postcode,
post_town, false
from data_import.osgb_addresses
where organisation_name != '' and building_number != ''
limit 100;

Having prepared our customer database, we can now define the steps we need to take to
end up with geocoded addresses:

Extract the non-geocoded records from the database
Use an external geocoding API in order to obtain the locations
Pump the data back to the database

Our geocoding API will be Google Maps Geocoding API. It has its own node module, so we
will be able to focus on the task without having to bother with assembling a valid URL to
call the API using http GET. You will find more information on the Google Maps' node
module at https://github.com/googlemaps/google-maps-services-js.

In order to use Google services, one has to generate an API key. API keys are freely
available and can be created via a Google Account at
https://developers.google.com/console.

Once our geocoding node module has been created, we will need to install some external
packages:

npm install pg --save
npm install @google/maps --save

Our first step is to extract the customer records that have not yet been geocoded:

/**
 * reads non-geocoded customer records
 */
const readCustomers = function(){
 return new Promise((resolve, reject) => {
 console.log('Extracting customer record...');

 let client = new pg.Client(dbCredentials);

 client.connect((err) => {
 if(err){
 reject(err.message);
 return;
 }

https://github.com/googlemaps/google-maps-services-js
https://developers.google.com/console

ETL Using Node.js

[175]

 client.query(`SELECT * FROM
 ${customersSchema}.${customersTable} WHERE geocoded = false
 LIMIT 10;`, function(err, result){
 if(err){
 try {
 client.end();
 } catch(e){}
 reject(err.message);
 return;
 }

 client.end();

 console.log('Done!');
 resolve(result.rows);
 });
 });
 });
}

You may have noticed that I am reading only ten records at a time. This is
because it lets me debug the code without having to reset the geocoding
status in the database. Also, there are some usage limits with the free
Google Maps account, so I am avoiding too many API calls.

Once we have the customer records at hand, we can geocode them. However, we should
probably stop for a second and familiarize ourselves with the geocoder API output so that
we can properly extract the information later. The following is an output example for our
first address in the database: 30, GUILDHALL SHOPPING CENTRE, EX4 3HJ, EXETER:

{
 "results" : [
 {
 "address_components":[
 {"long_name":"30-32","short_name":"30-32",
 "types":["street_number"]},
 {"long_name":"Guildhall Shopping Centre",
 "short_name":"Guildhall Shopping Centre",
 "types":["route"]},
 {"long_name":"Exeter","short_name":"Exeter","types":
 ["locality","political"]},
 {"long_name":"Exeter","short_name":"Exeter","types":
 ["postal_town"]},
 {"long_name":"Devon","short_name":"Devon","types":
 ["administrative_area_level_2","political"]},
 {"long_name":"England","short_name":"England","types":
 ["administrative_area_level_1","political"]},

ETL Using Node.js

[176]

 {"long_name":"United Kingdom","short_name":"GB","types":
 ["country","political"]},
 {"long_name":"EX4 3HH","short_name":"EX4 3HH","types":
 ["postal_code"]}
],
 "formatted_address":"30-32 Guildhall Shopping Centre, Exeter
 EX4 3HH, UK",
 "geometry":{
 "location":{
 "lat":50.7235944,
 "lng":-3.5333662
 },
 "location_type":"ROOFTOP",
 "viewport":{
 "northeast":
 {"lat":50.7249433802915,"lng":-3.532017219708498},
 "southwest":
 {"lat":50.7222454197085,"lng":-3.534715180291502}
 }
 },
 "partial_match":true,
 "place_id":"ChIJy3ZkNDqkbUgR1WXtac_0ClE",
 "types":["street_address"]
 },
 "status" : "OK"
}

Once we know what the geocoder data looks like, we can easily code the geocoding
procedure:

/**
 * generates a geocoding call
 */
const generateGeocodingCall = function(gMapsClient, customer){
 return new Promise((resolve, reject) => {
 let address = `${customer.street_no} ${customer.street},
 ${customer.postcode}, ${customer.town}`;

 gMapsClient.geocode({
 address: address
 }, (err, response) => {
 if(err){
 reject(err.message);
 return;
 }

 if(response.json.error_message){
 console.log(response.json.status,

ETL Using Node.js

[177]

 response.json.error_message);
 reject(err);
 return;
 }

 //update customer
 let geocoded = response.json.results[0];
 if(geocoded){
 customer.geocoded = true;
 customer.lon = geocoded.geometry.location.lng;
 customer.lat = geocoded.geometry.location.lat;
 }

 resolve();
 });
 });
}

In order to make our geocoding call work for us, we need to call it for the retrieved records.
Let's do it this way:

/**
 * geocodes specified customer addresses
 */
const geocodeAddresses = function(customers){
 return new Promise((resolve, reject) => {
 console.log('Geocoding addresses...');

 let gMapsClient = require('@google/maps').createClient({
 key: gMapsApiKey
 });

 //prepare geocoding calls
 let geocodingCalls = [];
 for(let c of customers){
 geocodingCalls.push(
 generateGeocodingCall(gMapsClient, c)
);
 }

 //and execute them
 Promise.all(geocodingCalls)
 .then(()=>resolve(customers))
 .catch((err) => reject(err));
 });
}

ETL Using Node.js

[178]

At this stage, we should have our customer records geocoded so we can save them back to
the database. As you may expect, this is rather straightforward:

/**
 * saves geocoded customers back to the database
 */
const saveCustomers = function(customers){
 return new Promise((resolve, reject) => {

 console.log('Saving geocoded customer records...');

 let client = new pg.Client(dbCredentials);

 client.connect((err) => {
 if(err){
 reject(err.message);
 return;
 }

 const updateSQLs = [];
 var pCounter = 0;

 for(let c of customers){
 updateSQLs.push(executeNonQuery(client, `UPDATE
 ${customersSchema}.${customersTable} SET
 lon=$1,lat=$2,geocoded=true WHERE id=$3;`, [c.lon,
 c.lat, c.id]));
 }

 Promise.all(updateSQLs)
 .then(() => {
 client.end();
 resolve();
 })
 .catch((err)=>{
 try{
 client.end();
 }
 catch(e){}
 reject(err);
 });
 });
 });
}

ETL Using Node.js

[179]

Finally, let's call our methods in a sequence and watch the magic happen:

//chain all the stuff together
readCustomers()
 .then(geocodeAddresses)
 .then(saveCustomers)
 .catch(err => console.log(`uups, an error has occured: ${err}`));

Consuming WFS data
Let's imagine that we work for a utilities company that is contracted to build a piece of
underground pipeline. The job is not only to do the actual construction work, the company
also has to negotiate with the land owners and obtain their legal agreements for the
construction work. The company GIS department has been tasked to prepare a list of
parcels that will be affected by the pipeline itself and the construction work - after all,
builders do need to be able to get to a place with their heavy equipment.

Our job is, therefore, to do the following:

Buffer the pipeline geometry with a radius of 100 m.1.
Extract the buffer geometry off the database.2.
Query a WFS service to obtain parcels that intersect with the pipeline buffer.3.
Load the parcels data to the PostGIS database.4.
Prepare a report with the parcel data.5.

We have visited Poland and the UK in the previous examples. For this example, we will fly
over to New Zealand and consume a web feature service provided for us by LINZ (Land
Information New Zealand). In order to use LINZ services, we need to register and create an
API key. You can do this at https://data.linz.govt.nz/accounts/register/. Then, when
ready, follow the API key generation instructions at
http://www.linz.govt.nz/data/linz-data-service/guides-and-documentation/creatin

g-an-api-key.

We have received geometry of the pipeline in question as a shapefile, so let's import it to the
database. First, let's ensure that our schema is intact:

create schema if not exists etl_pipeline;

https://data.linz.govt.nz/accounts/register/
http://www.linz.govt.nz/data/linz-data-service/guides-and-documentation/creating-an-api-key
http://www.linz.govt.nz/data/linz-data-service/guides-and-documentation/creating-an-api-key

ETL Using Node.js

[180]

Next, we'll let ogr2ogr do the work for us:

ogr2ogr -f "PostgreSQL" PG:"host=localhost port=5434 user=postgres
dbname=mastering_postgis" "pipeline.shp" -t_srs EPSG:2193 -nln
etl_pipeline.pipeline -overwrite -lco GEOMETRY_NAME=geom

The data for this example can be found in the data/08_consumig_wfs
directory.

The pipeline is located just on the outskirts of New Plymouth, near Egmont National Park,
and is marked red on the following screenshot:

At this stage, we're ready to write the code again. We will warm up by buffering our
pipeline. Let's assume that we need 5 m on each side for heavy equipment access:

/**
 * buffers the pipeline and returns a buffer geom as WKT
 */
const getPipelineBuffer = function(){
 return new Promise((resolve, reject) => {

ETL Using Node.js

[181]

 console.log('Buffering pipeline...');

 let client = new pg.Client(dbCredentials);

 client.connect((err) => {
 if(err){
 reject(err.message);
 return;
 }

 //note
 client.query(`select ST_AsGML(ST_Buffer(geom, 5, 'endcap=round
 join=round')) as gml from ${pipelineSchema}.${pipelineTable}
 limit 1;`, function(err, result){
 if(err){
 try {
 client.end();
 } catch(e){}
 reject(err.message);
 return;
 }

 client.end();

 if(result.rows.length !== 1)
 {
 reject('Hmm it looks like we have a little problem with
 a pipeline...');
 }
 else {
 console.log('Done!');
 resolve(result.rows[0].gml);
 }
 });
 });
 });
}

Once we have our buffer GML ready, we can query a WFS service. We will just send a POST
GetFeature request to the LINZ WFS and request the data in the same projection as our
pipeline dataset, so EPSG:2193 (New Zealand Transverse Mercator 2000); since we're using
JavaScript and our WFS supports JSON output, we will opt for it.

ETL Using Node.js

[182]

At this stage, we should have the data at hand, and since we asked for JSON output, our
data should be similar to the following:

{
 type: "FeatureCollection",
 totalFeatures: "unknown",
 features:
 [
 {
 type: "Feature",
 id: "layer-772.4611152",
 geometry: {
 "type": "MultiPolygon",
 "coordinates": [...]
 },
 geometry_name: "shape",
 properties: [{
 "id": 4611152,
 "appellation": "Lot 2 DP 13024",
 "affected_surveys": "DP 13024",
 "parcel_intent": "DCDB",
 "topology_type": "Primary",
 "statutory_actions": null,
 "land_district": "Taranaki",
 "titles": "TNF1/130",
 "survey_area": 202380,
 "calc_area": 202486
 }]
 }
]
}

The geometry object is GeoJSON, so we should be able to easily make PostGIS read it. Let's
do just that and put our parcels data in the database now:

/**
 * saves wfs json parcels to the database
 */
const saveParcels = function(data){
 return new Promise((resolve, reject) => {

 console.log('Saving parcels...');

 let client = new pg.Client(dbCredentials);

 client.connect((err) => {
 if(err){
 reject(err.message);

ETL Using Node.js

[183]

 return;
 }

 const sql = [
 executeNonQuery(client, `DROP TABLE IF EXISTS
 ${pipelineSchema}.${pipelineParcels};`),
 executeNonQuery(
 client,
 `CREATE TABLE ${pipelineSchema}.${pipelineParcels}
 (id numeric, appellation varchar, affected_surveys
 varchar, parcel_intent varchar, topology_type varchar,
 statutory_actions varchar, land_district varchar,
 titles varchar, survey_area numeric, geom geometry);`
)
];

 for(let f of data.features){
 sql.push(
 executeNonQuery(
 client,
 `INSERT INTO ${pipelineSchema}.${pipelineParcels}
 (id, appellation, affected_surveys, parcel_intent,
 topology_type, statutory_actions, land_district,
 titles, survey_area, geom)
 VALUES
 ($1,$2,$3,$4,$5,$6,$7,$8,$9,ST_SetSRID
 (ST_GeomFromGeoJSON($10),2193));`,
 [
 f.properties.id,
 f.properties.appellation,
 f.properties.affected_surveys,
 f.properties.parcel_intent,
 f.properties.topology_type,
 f.properties.statutory_actions,
 f.properties.land_district,
 f.properties.titles,
 f.properties.survey_area,
 JSON.stringify(f.geometry)
]
)
);
 }

 Promise.all(sql)
 .then(() => {
 client.end();
 console.log('Done!');
 resolve();

ETL Using Node.js

[184]

 })
 .catch((err) => {
 client.end();
 reject(err)
 });
 });
 });
}

Finally, let's chain our ops:

//chain all the stuff together
getPipelineBuffer()
 .then(getParcels)
 .then(saveParcels)
 .catch(err => console.log(`uups, an error has occured: ${err}`));

Voila! We have just obtained a set of parcels that intersect with our 5 m buffer around the
pipeline. We can pass the parcels information so that our legal department obtains detailed
information for further negotiations. Our parcels map now looks like this:

ETL Using Node.js

[185]

Summary
Most of the examples we have seen in this chapter involve extracting remote web-based
data sources rather than processing local files. This is because there are more and more
datasets provided by authorities via web services. I also find mixing remote and local
resources more interesting than simply changing the formats of files or reprojecting them.
As well as working with web-based data sources, we also worked with files. We
downloaded ZIP and gzip archives and extracted them. We also read JSON files line by line
and even made Node.js use ogr2ogr to import some shapefiles. We could do more file
processing in ogr2ogr, GDAL, or psql but that would seem a bit dull.

Obviously our ETL examples were not very complex, and we did not design and execute
any sophisticated data processing workflows. The important thing is that we did some task
automation and have shown that adding value to our data does not have to be difficult. I do
hope that, thanks to this chapter, repeatable, tedious, and time-consuming tasks are not a
problem anymore; they can even be fun when defining and coding a workflow.

7
PostGIS – Creating Simple

WebGIS Applications
Having learned how to use PostGIS to derive added value from our spatial data, it is now
time to explore ways of sharing our spatial assets with the outside world. In this chapter,
we will focus on consuming PostGIS data in WebGIS applications. In order to expose the
data, we will have a look at GeoServer, but we will also write some simple web services in
Node.js.

In this chapter, we will have a look at:

Outputting vector data as web services in GeoServer:
Outputting vector data as WMS services in GeoServer
Outputting raster data as WMS services in GeoServer
Outputting vector data as WFS services

Consuming WMS in ol3
Consuming WMS in Leaflet
Outputting and consuming GeoJSON
Outputting and consuming TopoJSON
Consuming WFS in ol3
Implementing a simple CRUD application that demonstrates vector editing via
web interfaces

PostGIS – Creating Simple WebGIS Applications

[187]

All the WebGIS examples presented in this chapter are purposefully minimalistic. The point
is not to create a fully featured web application, but rather to focus on the bits and pieces
that clearly describe the topics presented and can be easily reused in other applications.

The UI library used for the examples is ExtJS - a RIA (Rich Interface Application) SDK
available in both open source and commercial license flavors. You can obtain an open
source license from here: https://www.sencha.com/legal/GPL/. An archive with a GPL
version of the ExtJS 6.2 framework is also available in the chapter resources.

Code examples are meant to work straight away, so you should be able to simply drop the
code into your web server directory and it should work without further setup. If you do not
have the resources to use a web server, you can still run the examples by using the Sencha
CMD tool. The ExtJS Hello World example describes how to use Sencha CMD without
using a web server.

There is a rather well known open source library called GeoExt that
extends ExtJs with a set of web GIS-related widgets based on OpenLayers.
If you happen to like ExtJs, you can find more information on GeoExt here:
h t t p s ://g e o e x t . g i t h u b . i o /g e o e x t 3/.

ExtJS says Hello World
This is a short example aimed at making you comfortable with setting up and running the
web application examples. First, make sure you have Sencha CMD installed. If not, you may
get it from here: https://www.sencha.com/products/extjs/cmd-download/.

Next, you will need to set up your workspace by simply extracting the ExtJS library to
code/webgis_examples/ext. When ready, your ext folder contents should look like this:

https://www.sencha.com/legal/GPL/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://geoext.github.io/geoext3/
https://www.sencha.com/products/extjs/cmd-download/

PostGIS – Creating Simple WebGIS Applications

[188]

All the examples are located in the code directory in this chapter's resources. In order to
launch our Hello World example, simply navigate to
code/webgis_examples/apps/01_hello_world in your CMD and then run the
following command:

sencha app watch

PostGIS – Creating Simple WebGIS Applications

[189]

When you navigate to http://localhost:1841/apps/01_hello_world/, you should
see our Hello World application (this is a default empty app that Sencha CMD generates):

If you feel interested in learning a bit more about ExtJS, you should check
out the following resources:

h t t p s ://w w w . p a c k t p u b . c o m /w e b - d e v e l o p m e n t /m a s t e r i n g - e x
t - j s - s e c o n d - e d i t i o n

h t t p s ://w w w . p a c k t p u b . c o m /w e b - d e v e l o p m e n t /e x t - j s - 6- e x a
m p l e

Configuring GeoServer web services
Before we move on to writing our WebGIS code, we need to configure a service so we can
expose spatial data for a web client to consume.

Our examples are based on GeoServer as it is considered a reference implementation of
OGC web standards. Apart from that, GeoServer provides a rather intuitive administration
GUI to simplify many server maintenance tasks.

https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/mastering-ext-js-second-edition
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example
https://www.packtpub.com/web-development/ext-js-6-example

PostGIS – Creating Simple WebGIS Applications

[190]

If you happen to not have GeoServer installed, please get it up and running first - you can
download the software from here: http://geoserver.org/release/stable/. GeoServer
documentation may be obtained from here: http://docs.geoserver.org/.

Installation is rather straightforward and we suggest for the sake of simplicity you use the
installation pack wrapped with the Jetty container.

While data service configuration is specific to GeoServer, you can use any alternative
GeoServer of your choice, for example, MapServer (http://www.mapserver.org/). If you
decide to not use GeoServer and go for an alternative, our code examples should not be
affected (although perhaps some service URL defaults may differ).

Once you have your installation up and running on the default port 8080, when you
navigate to http://localhost:8080/geoserver you should be greeted with the
following screen:

http://geoserver.org/release/stable/
http://docs.geoserver.org/
http://www.mapserver.org/

PostGIS – Creating Simple WebGIS Applications

[191]

Now as our GeoServer instance is up and running, we can move on to configuring some
data sources. In order to configure GeoServer, one has to log on first - the default
administrator user name is admin and the default password is geoserver.

If you feel like learning a bit more about GeoServer- related topics, you
should check out the following resources:
h t t p s ://w w w . p a c k t p u b . c o m /a p p l i c a t i o n - d e v e l o p m e n t /g e o s e r v e r - b e g
i n n e r %E 2%80%99s - g u i d e
h t t p s ://w w w . p a c k t p u b . c o m /n e t w o r k i n g - a n d - s e r v e r s /m a s t e r i n g - g e o s
e r v e r
h t t p s ://w w w . p a c k t p u b . c o m /a p p l i c a t i o n - d e v e l o p m e n t /g e o s e r v e r - c o o

k b o o k .

Importing test data
We need some data to work with before we can set up services. We have imported a fair
amount of data already, but for the sake of keeping things in order, let's create a WebGIS
schema and import some data:

h t t p ://w w w . n a t u r a l e a r t h d a t a . c o m /h t t p //w w w . n a t u r a l e a r t h d a t a . c o m /d o w n l

o a d /10m /r a s t e r /N E 2_ H R _ L C _ S R _ W _ D R . z i p - do not import this one yet!

http://www.naturalearthdata.com/http//www.naturalearthdata.com/downloa

d/50m/raster/NE2_50M_SR_W.zip - do not import this one yet!

http://www.naturalearthdata.com/http//www.naturalearthdata.com/downloa

d/10m/physical/ne_10m_coastline.zip - import into the ne_coastline table.
http://www.naturalearthdata.com/http//www.naturalearthdata.com/downloa

d/10m/physical/ne_10m_reefs.zip - import into the ne_reefs table.

This time I will skip the vector import part and treat it as a little reminder
exercise.
Avoid importing the raster yet though. We will import it a bit later, so we
can adjust to some GeoServer plugin requirements and use the provided
tooling in order to avoid manual adjustment.

https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/application-development/geoserver-beginner%E2%80%99s-guide
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/networking-and-servers/mastering-geoserver
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
https://www.packtpub.com/application-development/geoserver-cookbook
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/raster/NE2_HR_LC_SR_W_DR.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/50m/raster/NE2_50M_SR_W.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/50m/raster/NE2_50M_SR_W.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_coastline.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_coastline.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_reefs.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_reefs.zip

PostGIS – Creating Simple WebGIS Applications

[192]

Outputting vector data as WMS services in
GeoServer

All the main access points of GeoServer configurations are located on the
left-hand side.

We will start with configuring a workspace for the data sources we are about to expose. A
workspace can be treated as a form of data encapsulation, so it is possible to keep the data
in order.

In order to create a workspace, click Workspaces under the Data section. Once in the
Workspaces section, click the Add new workspace link. You will be presented with a form
to fill in, so simply type mastering_postgis in the Name and Namespace URI fields, and
then click Submit.

In order to expose data from a PostgreSQL database, we need to configure a datasource
first. In order to do so, navigate to the Stores menu in the Data section.

Once in the Stores section, click the Add new Store link and then choose the PostGIS link.
You will be presented with a data source configuration form, where you will provide a
database connection string as well as some other settings:

For the workspace, pick the newly created mastering_postgis workspace
Name your data source webgis
Tick Expose primary keys, and make sure to connect to the webgis schema

PostGIS – Creating Simple WebGIS Applications

[193]

Once you submit the form, provided all the parameters were valid, you should be
presented with the layer creation view:

Instead of creating a layer straight away, we will do it the harder way so the process is
described in detail and can be repeated without having to create a data store first. In order
to expose a PostGIS table as a WMS service, navigate to the Layers menu in the Data
section.

Once in the Layers section, click the Add a new layer link; you will be asked to choose a
store - pick mastering_postgis:webgis. You should be presented with the New Layer screen
that we have already seen.

Click Publish link next to the name of the table you are about to publish; in this scenario,
let's publish the ne_coastline table. You will be presented with a Layer creation screen,
where you should make sure to:

Data tab:

Set the declared SRS to EPSG:4326
Set SRS handling to Force declared
Compute Bounding Boxes using the appropriate links

Publishing tab:

Pick the default style for a line - it is a blueish line

Once the previous things have been set, save the layer by clicking the Save button. If all the
settings were correct, you should be presented with the Layers screen, and a newly created
layer should be present in the list of configured layers.

PostGIS – Creating Simple WebGIS Applications

[194]

Let's make sure our layer has been defined properly. In order to do so, navigate to Layer
Preview in the Data section, locate the layer, and click the link that opens a preview in
OpenLayers. You should see a screen similar to the following:

Feel free to play a bit with the layer preview; especially take a closer look at some options
available to you when you click the triple dot button. You should see a simple interface that
allows you to change WMS layer configurations such as: WMS version, single tile/tiled,
format, and antialiasing; you can even use CQL to query the dataset. When you click a
feature, you will see some feature - related data.

I strongly encourage you to have a closer look at the requests issued by the browser in order
to fetch WMS data. There are many tools to do this, but since we are about to write some
WebGIS examples, I suggest using either the Chrome console, or if you happen to prefer
Firefox, Firebug will be the choice. For example, the following URL extracts a tile with
Northeast Australia, Papua New Guinea, and the northern part of the Solomon Islands:

http://localhost:8080/geoserver/mastering_postgis/wms?SERVICE=WMS&VERSI
ON=1.1.1&REQUEST=GetMap&FORMAT=image%2Fpng&TRANSPARENT=true&tiled=true&
STYLES&LAYERS=mastering_postgis%3Ane_coastline&tilesOrigin=-180%2C-90&W
IDTH=256&HEIGHT=256&SRS=EPSG%3A4326&BBOX=135%2C-22.5%2C157.5%2C0

PostGIS – Creating Simple WebGIS Applications

[195]

Outputting raster data as WMS services in GeoServer
Unfortunately, PgRaster support is still not common and GeoServer does not support
consuming PgRaster yet. This section shows how to use the PostgreSQL database to load a
raster and then expose it via GeoServer.

We will make use of PgRaster a bit later though - we will write a simple
WMS GetMap request handler.

Exposing a GeoServer layer based on a raster stored in PostgreSQL is not as straightforward
as it was with vector tables.

In order to create a raster layer, we first need to install an Image Mosaic JDBC
plugin: http://docs.geoserver.org/stable/en/user/data/raster/imagemosaicjdbc.htm
l.

Do make sure to install the plugin appropriate to your GeoServer version.

Installing the plugin is rather straightforward and you should not encounter any difficulties
doing so. It is just a matter of downloading and copying the content of a plugin archive
(usually a JAR file) into GeoServer's WEB-INF\lib directory.

In order to install the plugin, you will need to shut down your GeoServer
instance and once the plugin is installed, you should bring it back.

Having installed our plugin, we now need to configure a data source for the raster layer.
This is where some manual work is required. A detailed manual on how to configure
GeoServer to consume raster data is here:
http://docs.geoserver.org/stable/en/user/tutorials/imagemosaic-jdbc/imagemosaic

-jdbc_tutorial.html, but since it is a bit XML-ish/SQL-ish, you find a tutorial excerpt in
following section, so our configuration goes smoothly.

All the files that we are preparing here can be found in this chapter's code
directory.

http://docs.geoserver.org/stable/en/user/data/raster/imagemosaicjdbc.html
http://docs.geoserver.org/stable/en/user/data/raster/imagemosaicjdbc.html
http://docs.geoserver.org/stable/en/user/tutorials/imagemosaic-jdbc/imagemosaic-jdbc_tutorial.html
http://docs.geoserver.org/stable/en/user/tutorials/imagemosaic-jdbc/imagemosaic-jdbc_tutorial.html

PostGIS – Creating Simple WebGIS Applications

[196]

Let's create some raster coverage configuration files first. We will need three XML files;
create them in the GEOSERVER_DATA_DIR/coverages:

ne_raster.postgis.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE ImageMosaicJDBCConfig [
 <!ENTITY mapping PUBLIC "mapping" "mapping.postgis.xml">
 <!ENTITY connect PUBLIC "connect" "connect.postgis.xml">
]>
<config version="1.0">
 <coverageName name="ne_raster"/>
 <coordsys name="EPSG:4326"/>
 <scaleop interpolation="1"/>
 <verify cardinality="false"/>
 &mapping;
 &connect;
</config>

connect.postgis.xml

<connect>
 <dstype value="DBCP"/>
 <username value="postgres"/>
 <password value="postgres"/>
 <jdbcUrl value="jdbc:postgresql://localhost:5434/mastering_postgis"/>
 <driverClassName value="org.postgresql.Driver"/>
 <maxActive value="10"/>
 <maxIdle value="0"/>
</connect>

mapping.postgis.xml

<spatialExtension name="postgis"/>
<mapping>
 <masterTable name="mosaic" >
 <coverageNameAttribute name="name"/>
 <maxXAttribute name="maxx"/>
 <maxYAttribute name="maxy"/>
 <minXAttribute name="minx"/>
 <minYAttribute name="miny"/>
 <resXAttribute name="resx"/>
 <resYAttribute name="resy"/>
 <tileTableNameAtribute name="tiletable" />
 <spatialTableNameAtribute name="spatialtable" />
 </masterTable>
 <tileTable>

PostGIS – Creating Simple WebGIS Applications

[197]

 <blobAttributeName name="data" />
 <keyAttributeName name="location" />
 </tileTable>
 <spatialTable>
 <keyAttributeName name="location" />
 <geomAttributeName name="geom" />
 <tileMaxXAttribute name="maxx"/>
 <tileMaxYAttribute name="maxy"/>
 <tileMinXAttribute name="minx"/>
 <tileMinYAttribute name="minx"/>
 </spatialTable>
</mapping>

Once ready with the XML files, navigate to GEOSERVER_DATA_DIR/coverages, create a
ne_raster_scripts directory, and then execute the following command:

java -jar GEOSERVER_WEB_SERVER_WEBAPPS/geoserver/WEB-INF/lib/ gt-
imagemosaic-jdbc-16.0.jar ddl -config /
GEOSERVER_DATA_DIR/coverages/ne_raster.postgis.xml -spatialTNPrefix
ne_raster -pyramids 6 -statementDelim ";" -srs 4326 -targetDir
ne_raster_sqlscripts

This should output some SQL scripts
toGEOSERVER_DATA_DIR/coverages/ne_raster_scripts that will let us create the
appropriate tables for the raster data. Scripts will create tables in the public schema, so this
may be a bit inconvenient.

In the preceding command, you should adjust some paths:

GEOSERVER_WEB_SERVER_WEBAPPS - should be your
GeoServer's webapps folder, where you have your GeoServer
instance deployed
GEOSERVER_DATA_DIR - GeoServer's data directory.

When you're ready, just execute the generated scripts:

Createmeta.sql

Add_ne_raster.sql

This should create some new tables in the public schema.

PostGIS – Creating Simple WebGIS Applications

[198]

Once our database is prepared, we can take care of processing the raster. First we need to
tile it using gdal_retile:

gdal_retile.py -co TFW=YES -r near -ps 256 256 -of GTiff -levels 6 -
targetDir tiles NE2_50M_SR_W.tif

I am using a smaller raster here for a simple reason: a larger one would
likely cause some troubles related to limited memory associated with our
GeoServer's Jetty container.

With the tiles ready, we can now import them into the database. Before we do so, let's
ensure that a PostgreSQL driver is located in the lib/ext directory of the Java runtime
(you can copy the file from your geoserver/WEB-INF/lib directory; my Windows box
had a postgresql-9.4.1211.jar file).

The final raster processing step is to use the imagemosaik plugin again to import the
generated tiles into the database:

java -jar GEOSERVER_WEB_SERVER_WEBAPPS/geoserver/WEB-INF/lib/gt-
imagemosaic-jdbc-16.0.jar import -config
GEOSERVER_DATA_DIR/coverages/ne_raster.postgis.xml -spatialTNPrefix
ne_raster -tileTNPrefix ne_raster -dir tiles -ext tif

Or final step is to set up a layer in GeoServer. In order to do so, click Stores under the Data
section and click the Add new Store link. Next, pick the ImageMosaicJDBC link and create
a data source called webgis_raster under the mastering_postgis workspace. In the
URL field, you will have to provide a file URL to the ne_raster.postgis.xml we created
in the GEOSERVER_DATA_DIR/coverages directory. When you click the Save button, you
should be taken to the Create layer screen:

PostGIS – Creating Simple WebGIS Applications

[199]

Click the Publish link and you will be taken to the layer configuration screen. Make sure to
verify the projection information and to reload the band definitions and save the layer.
Provided that you have configured the layer properly, you should now be able to preview
it:

If you happen to preview the requests the browser is issuing, you may find that the URLs
are similar to the following one that pulls an image for the Iberian peninsula:

http://localhost:8080/geoserver/mastering_postgis/wms?SERVICE=WMS&VERSI
ON=1.1.1&REQUEST=GetMap&FORMAT=image%2Fjpeg&TRANSPARENT=true&tiled=true
&STYLES&LAYERS=mastering_postgis%3Ane_raster&tilesOrigin=-179.983333333
3%2C-90.0166666658&WIDTH=256&HEIGHT=256&SRS=EPSG%3A4326&BBOX=-11.25%2C3
3.75%2C0%2C45

PostGIS – Creating Simple WebGIS Applications

[200]

There is a GeoServer plugin meant to simplify all the work we have done
so far. It is called PgRaster and you can obtain more information on it
here: h t t p ://g e o s e r v e r . r e a d t h e d o c s . i o /e n /l a t e s t /c o m m u n i t y /p g r a s

t e r /p g r a s t e r . h t m l ;
Older versions of the PGRaster plugin can be found here: h t t p s ://r e p o . b

o u n d l e s s g e o . c o m /r e l e a s e /o r g /g e o s e r v e r /c o m m u n i t y /g s - p g r a s t e r /.

Outputting vector data as WFS services
Creating GeoServer layers to be outputted via WFS is exactly the same as for WMS, so we
have already configured one layer. As an exercise, please configure a layer for the second
table we imported, ne_reefs. When ready, it should look like this one when you preview it
(note I have changed the color to red):

When you change the preview output to WFS, you will not see an image, but rather the
output of a GetFeature request. By default, GeoServer limits output to 50 features; I have
changed the URL to only return the first one though:

http://10.0.0.19:8080/geoserver/mastering_postgis/ows?service=WFS&versi
on=1.0.0&request=GetFeature&typeName=mastering_postgis:ne_coastline&max
Features=1&outputFormat=gml3

http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
http://geoserver.readthedocs.io/en/latest/community/pgraster/pgraster.html
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/
https://repo.boundlessgeo.com/release/org/geoserver/community/gs-pgraster/

PostGIS – Creating Simple WebGIS Applications

[201]

Thanks to that, we can paste the following XML:

<wfs:FeatureCollection numberOfFeatures="0"
timeStamp="2016-11-18T18:49:56.136Z"
xsi:schemaLocation="http://www.opengis.net/wfs
http://10.0.0.19:8080/geoserver/schemas/wfs/1.1.0/wfs.xsd mastering_postgis
http://10.0.0.19:8080/geoserver/mastering_postgis/wfs?service=WFS&version=1
.0.0&request=DescribeFeatureType&typeName=mastering_postgis%3Ane_coastline"
>
 <gml:featureMembers>
 <mastering_postgis:ne_coastline gml:id="ne_coastline.1">
 <mastering_postgis:gid>1</mastering_postgis:gid>
<mastering_postgis:scalerank>6.00000000000</mastering_postgis:scalerank>
<mastering_postgis:featurecla>Coastline</mastering_postgis:featurecla>
 <mastering_postgis:geom>
 <gml:MultiLineString
srsName="http://www.opengis.net/gml/srs/epsg.xml#4326" srsDimension="2">
 <gml:lineStringMember>
 <gml:LineString>
 <gml:posList>
 -71.31509355 41.58079662 -71.30467689
41.60423412 -71.3033748 41.62636953 -71.31769772 41.63287995 -71.33071855
41.64720287 -71.33592689 41.65761953 -71.34373939 41.67064037 -71.35545814
41.6602237 -71.35936439 41.64199453 -71.35676022 41.63157787 -71.33592689
41.62636953 -71.33071855 41.61074453 -71.33722897 41.59251537 -71.33722897
41.5820987 -71.33071855 41.57558828 -71.31509355 41.58079662
 </gml:posList>
 </gml:LineString>
 </gml:lineStringMember>
 </gml:MultiLineString>
 </mastering_postgis:geom>
 </mastering_postgis:ne_coastline>
 </gml:featureMembers>
</wfs:FeatureCollection>

Making use of PgRaster in a simple WMS
GetMap handler
As mentioned previously, PgRaster support in GeoServer is not there yet. This is good,
because we can learn how to consume it ourselves!

PostGIS – Creating Simple WebGIS Applications

[202]

Let's import some data first:

raster2pgsql -s 4326 -C -l 2,4,6,8,10,12,14 -I -F -t 256x256
NE2_HR_LC_SR_W_DR.tif webgis.ne_raster | psql -h localhost -p 5434 -U
postgres -d mastering_postgis

In Chapter 5, Exporting Spatial Data, we used PostgreSQL's large object support to export
the raster from the database. We will now build on what we achieved there, so we can come
up with a simple raster extractor query for our WMS handler. The interesting bit is the
query we used for assembling the tiles of the imported raster back into one raster:

select
 ST_Union(rast) as rast
from
 data_import.gray_50m_partial
where
 filename = 'gray_50m_partial_bl.tif'

Our slightly extended query looks like this:

select
 --3. union our empty canvas with the extracted raster
 ST_Union(rast) as rast
from (
 --1. empty raster based on the passed bounds and raster settings of
 the raster data is extracted from;
 --this is our 'canvas' we will paint the extracted raster on.
 --this lets us always output a raster that extends to the requested
 bounds
 select ST_AsRaster(ST_MakeEnvelope(14,85,24,95,4326), (select rast
 from data_import.gray_50m_partial limit 1)) as rast

 --2. extract the tiles of the raster that interset with bounds of out
 request and clip them to the requested bound
 union all select
 ST_Clip(
 ST_Union(rast),
 ST_MakeEnvelope(14,85,24,95,4326)
)as rast
 from
 data_import.gray_50m_partial

 where
 ST_Intersects(rast, ST_MakeEnvelope(14,85,24,95,4326))

) as preselect

PostGIS – Creating Simple WebGIS Applications

[203]

As a matter of fact, we do not do much more. Basically, what happens here is:

Generation of an empty raster that has the
extent of the requested bounds and the
parameters of the source raster we read from
Extraction of the source tiles that intersect
with the requested bounds; tiles are further
cropped with the very same bounds
Data assembly - we paint the natural earth
raster on top of the empty canvas

At this stage, we have a raster we can output. To do so, we'll need a simple HTTP handler
that can deal with our WMS requests. This will be a simplistic handler that is supposed to
present the idea rather than be bullet-proof, production-ready code. Our WMS handler will
only support a GetMap request.

Let's start with disassembling the WMS request itself into separate parameters, so it is clear
what we are about to deal with. You may remember an example of a WMS request
presented a few pages back - basically its query string will be similar to the following:
?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&FORMAT=image%2Fjpeg&TRANSPARE
NT=true&STYLES&LAYERS=mastering_postgis%3Ane_coastline&&WIDTH=256&HEIGH

T=256&SRS=EPSG%3A4326&BBOX=-11.25%2C33.75%2C0%2C45.

It will be a bit easier when we look at the parameters one by one:

SERVICE=WMS: Service type
VERSION=1.1.1: Version of the WMS service
REQUEST=GetMap: Request type
FORMAT=image/jpeg: Output format
TRANSPARENT=true: Whether or not the
background should be transparent;
important when outputting vector data, but
also when there are voids in the raster data
STYLES: Styles to be applied to the requested
data
LAYERS=mastering_postgis:ne_coastli

ne: Layers to be extracted
WIDTH=256: Width of the image
HEIGHT=256: Height of the image
SRS=EPSG:4326: Coordinate system of the

PostGIS – Creating Simple WebGIS Applications

[204]

request
BBOX=-11.25,33.75,0,45: Bounding box
in the form of minx,miny,maxx,maxy

The bounding box described previously is specific to version < 1.3.0 of the
WMS specification. Starting with version 1.3.0, the order of the bounding
box coordinates depends on the order of coordinates defined by the SRS
itself. Our WMS handler will only support v 1.1.1 of the specs.

Now, as we fully understand the WMS request parameters, we can move on to coding a
simple handler in Node.js. We will build upon a web Hello World example that we wrote
in a previous chapter:

The code for this example can be found in the code/wms directory.

const http = require('http');
const url = require('url');

const server = http.createServer((req, res) => {

 console.warn('Processing WMS request...', req.url);

 var params = url.parse(req.url, true).query; // true to get query
 as object
 //fix param casing; url param names should not be case sensitive!...
 let pLowerCase = p.toLowerCase();
 if(p !== pLowerCase){
 params[pLowerCase] = params[p];
 delete params[p];
 }
 }

 //validate the request
 if(vaidateRequest(res, params)){
 processRequest(res, params);
 }
});

const port = 8081; //another port so we can have it working with geoserver
server.listen(port, () => {
 console.warn('WMS Server listening on http://localhost:%s', port);
});

PostGIS – Creating Simple WebGIS Applications

[205]

As mentioned, our handler is going to be a simple one; therefore we will hardcode some
logic that otherwise should be made dynamic, and thanks to that we'll keep the example
clear.

Let's perform a simple checkup on the request parameter first so we can ensure that the
submitted request is valid. According to the OGC specification, WMS should output
exceptions in a specified form driven by the exception format parameter. In this case
though, we will simply output 400, as handling exceptions the way that complies to the
specs is not our task at this time. Our validation handler will therefore look like this:

/**
 * validates the WMS request; returns true if the request is valid and
false otherwise. if request is nod valid response writes 400 and closes
 */
const validateRequest = (res, params) => {
 var valid = true;
 try {
 for(var validator of validationRules){
 validator(params);
 }
 }
 catch(e){
 valid = false;
 handleError(res, e);
 }
 return valid;
}

/**
 * handles exception response
 */
const handleError = (res, msg) => {
 res.statusCode = 400;
 res.end(msg);
};

We'll need some validation rules too:

const validationRules = [
 (params) => {validateParamPresence(params, 'service')},
 (params) => {if(params.service !== 'WMS'){throw 'This service only
 supports WMS'}},
 (params) => {validateParamPresence(params, 'version')},
 (params) => {if(params.version !== '1.1.1'){throw 'The only supported
version
 is 1.1.1';}}, (...)
];

PostGIS – Creating Simple WebGIS Applications

[206]

Do review the source code, as there are more validation rules applied to a
request before it can be processed.

Once our request is validated, we should be able to render a map image safely (without
errors). In order to do so, we have to talk to our database and for this, we need the pg
module first:

npm install --pg save

Let's extract the params we need to process the request:

/**
 * generates wms output based on the params. params should be validated
prior to calling this method
 */
const processRequest = (res, params) => {

 //prepare some params first
 let w = parseInt(params.width);
 let h = parseInt(params.height);
 let bb = params.bbox.split(',');
 let minX = parseFloat(bb[0]);
 let minY = parseFloat(bb[1]);
 let maxX = parseFloat(bb[2]);
 let maxY = parseFloat(bb[3]);
 let format = getGdalFormat(params.format);

 //get table name based on tile resolution expressed in map units
 let tableName = getTableName(Math.abs(maxX - minX) / w);
}

The database connection skeleton is not very complex and actually it is pretty much what
we have seen before:

//init client with the appropriate conn details
const client = new pg.Client({
 host: 'localhost',
 port: 5434,
 user: 'postgres',
 password: 'postgres',
 database: 'mastering_postgis'
});

//connect to the database
client.connect(function(err){

PostGIS – Creating Simple WebGIS Applications

[207]

 if(err){
 handleError(err);
 return;
 }

 let query = `TODO`;

 client.query(query, function(err, result){
 client.end();

 if(err){
 handleError(err);
 return;
 }

 //handle response
 res.statusCode = 200;
 res.setHeader('content-type', params.format);
 res.end(result.rows[0].rast);
 });
});

The last part we have left is the actual query. We have experimented with it a bit, so it is
now time to make it dynamic:

let query = `
select
 --3. union our empty canvas with the extracted raster and resize it to
the requested tile size
 ST_AsGDALRaster(
 ST_Resample(
 ST_Union(rast),
 $1::integer,
 $2::integer,
 NULL,NULL,0,0,'Cubic',0.125
),
 $3
)as rast
from (
 --1. empty raster based on the passed bounds and raster settings of the
raster data is extracted from;
 --this is our 'canvas' we will paint the extracted raster on.
 --this lets us always output a raster that extends to the requested
bounds
 select ST_AsRaster(ST_MakeEnvelope($4,$5,$6,$7,4326), (select rast from
webgis.${tableName} limit 1)) as rast

 --2. extract the tiles of the raster that interset with bounds of out

PostGIS – Creating Simple WebGIS Applications

[208]

request and clip them to the requested bound
 union all select
 ST_Clip(
 ST_Union(rast),
 ST_MakeEnvelope($4,$5,$6,$7,4326)
)as rast
 from
 webgis.${tableName}
 where
 ST_Intersects(rast, ST_MakeEnvelope($4,$5,$6,$7,4326))
) as preselect
;

As you can see, the preceding query is almost the same as the one we saw already; the main
difference is its parameterization. Also, I have added a ST_Resample call with the Cubic
resampling algorithm, so the resized images look smooth, and an ST_AsGDALRaster call so
we get the binary data that we can pipe straight into the response.

At this stage, our WMS handler should be ready, so let's launch it via the node index.js
command and paste the following URL into the browser's address bar:
http://localhost:8081/?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&FORMAT=
image%2Fpng&TRANSPARENT=true&STYLES&LAYERS=ne_raster&&WIDTH=256&HEIGHT=

256&SRS=EPSG%3A4326&BBOX=-11.25%2C33.75%2C0%2C45.

The expected output is the Iberian Peninsula cut out of an o_2_ne_raster table:

PostGIS – Creating Simple WebGIS Applications

[209]

Congratulations! You have just created your very own Geo-Server capable of serving WMS
GetMap requests. Obviously, our implementation is quite limited and should be considered
a rather basic one--our point though was to consume PgRaster, not to create a full- blown
service.

Consuming WMS
Having exposed our WMS services, we can now consume them in a web application. The
two most popular web mapping libraries are OpenLayers and Leaflet. We will have a closer
look at both of them.

It is advised to review the documentation of both libraries. It can be found at
https://openlayers.org/ and http://leafletjs.com/.

Consuming WMS in ol3
Our first example renders a Window with an OpenLayers map inside. We add three layers
to the map - all of them exposed via GeoServer. We need to create a map with the following
code:

/**
 * Create map
 * @param mapContainerId
 */
createMap: function(mapContainerId) {

 var proj = ol.proj.get('EPSG:4326');

 this.map = new ol.Map({
 layers: this.createLayers(),
 target: mapContainerId,
 controls: ol.control.defaults({
 attributionOptions: {
 collapsible: false
 }
 }).extend([
 new ol.control.ScaleLine(),
 new ol.control.MousePosition({
 projection: proj,
 coordinateFormat: function(coords) {
 var output = '';
 if (coords) {
 output = coords[0].toFixed(5) + ' : ' +

https://openlayers.org/
http://leafletjs.com/

PostGIS – Creating Simple WebGIS Applications

[210]

 coords[1].toFixed(5);
 }
 return output;
 }
 })
]),

 view: new ol.View({
 projection: proj,
 extent: proj.getExtent(),

 center: [155, -15], //Australian Great Coral Reef
 zoom: 5
 })
 });
},

The preceding code creates a map with some simple controls and the layers specified by the
following method:

/**
 * creates layers for the map
 * @returns {[*]}
 */
createLayers: function() {
 var proj = ol.proj.get('EPSG:4326');
 return [
 new ol.layer.Tile({
 source: new ol.source.TileWMS({
 url: 'http://localhost:8080/geoserver/wms',
 params: {
 'LAYERS': 'mastering_postgis:ne_coastline,
 mastering_postgis: ne_reefs ',
 'VERSION': '1.1.1'
 },
 projection: proj,
 extent: proj.getExtent(),
 attributions: [
 new ol.Attribution({
 html: 'Mastering PostGIS - GeoServer vector'
 })
]
 })
 })
];
}

PostGIS – Creating Simple WebGIS Applications

[211]

We now need to navigate to the example's folder, run sencha app watch, and navigate to
http://localhost:1841/apps/02_ol3_wms/. You should see a simple map of the
Australian Great Barrier Reef:

Let's add a bit of life to our map and also display the raster that we loaded using the
ImageMosaicJDBC plugin:

new ol.layer.Tile({
 source: new ol.source.TileWMS({
 url: 'http://localhost:8080/geoserver/wms',
 params: {
 'LAYERS': 'mastering_postgis:ne_raster',
 'VERSION': '1.1.1'
 },
 projection: proj,
 extent: proj.getExtent(),
 attributions: [
 new ol.Attribution({
 html: 'Mastering PostGIS - GeoServer raster'
 })
]
 })
}),

PostGIS – Creating Simple WebGIS Applications

[212]

The preceding code is just a layer definition that pulls data for our raster layer. When we
add it above the WMS layer reading vector data, we should get the following output:

Consuming WMS in Leaflet
Map declaration in Leaflet is very similar to what we did with OpenLayers:

/**
 * Create map
 * @param mapContainerId
 */
createMap: function(mapContainerId){
 this.map = new L.Map(mapContainerId, {
 crs: L.CRS.EPSG4326,
 layers: this.createLayers()
 }).setView([-15,155], 4);

 L.control.scale().addTo(this.map);
}

PostGIS – Creating Simple WebGIS Applications

[213]

The preceding code creates a Leaflet Map instance and renders it into the specified
container. Layers are declared in another method:

/**
 * creates layers for the map
 * @returns {[*]}
 */
createLayers: function(){
 return [
 L.tileLayer.wms('http://localhost:8081', {
 layers: 'ne_raster',
 version: '1.1.1',
 format: 'image/png',
 transparent: true,
 maxZoom: 8,
 minZoom: 0,
 continuousWorld: true,
 attribution: 'Mastering PostGIS - NodeJs WMS handler reading
 pgraster'
 }),
 L.tileLayer.wms('http://localhost:8080/geoserver/wms?', {
 layers:
 'mastering_postgis:ne_coastline,mastering_postgis:ne_reefs',
 version: '1.1.1',
 format: 'image/png',
 transparent: true,
 maxZoom: 8,
 minZoom: 0,
 continuousWorld: true,
 attribution: 'Mastering PostGIS - GeoServer vector'
 })
];
}

Once again, we add two WMS layers to a map: first a layer reading raster data, and next a
layer rendering vector data. This time though we made a little change: our raster data WMS
endpoint is now the Node.js- powered service.

We now need to navigate to the example's folder, run sencha app watch, and navigate to
http://localhost:1841/apps/03_leaflet_wms/.

PostGIS – Creating Simple WebGIS Applications

[214]

As expected, the image is very similar to the one we saw already rendered by ol3. Basically,
the only noticeable difference is the map controls and the panel title:

Enabling CORS in Jetty
Because our GeoServer is hosted at a different origin than our web application (a different
port is enough to make a domain be considered by a browser to be a different origin; an
origin is a combination of protocol, host, and port), we will not be able to perform AJAX
requests straight away as the browser will refuse to retrieve the data from such a location.
This is due to the same-origin policy that is meant to prevent scripts from untrusted sources
gaining access to the DOM of a page.

CORS (Cross Origin Resource Sharing) is a standard mechanism for cross origin
communication between browsers and servers. The CORS specification defines a set of
headers that are used to communicate which operations are allowed. Thanks to that, it is
possible to expose APIs that can be consumed by web clients located in different domains
than the API itself.

PostGIS – Creating Simple WebGIS Applications

[215]

In order to enable our web apps to send AJAX requests to our remote GeoServer, we need
to enable CORS in our Jetty server. In order to do so, first we need to check the version of
Jetty bundled with our GeoServer. You can check it by looking at the Jetty JAR files located
in the geoserver/lib directory. In my case, it is Jetty 9.2.13.v20150730. Next, we need
to obtain an appropriate servlets file from
http://repo1.maven.org/maven2/org/eclipse/jetty/jetty-servlets/. In my case, it was
http://repo1.maven.org/maven2/org/eclipse/jetty/jetty-servlets/9.2.13.v20150730

/jetty-servlets-9.2.13.v20150730.jar. Once downloaded, the servlets JAR file should
be put in webapps/geoserver/WEB-INF/lib. The last step is to modify
webapps/geoserver/WEB-INF/web.xml and add the following XML (I have put the mine
just after the context-param declarations and before the first filter declaration):

<filter>
 <filter-name>cross-origin</filter-name>
 <filter-class>org.eclipse.jetty.servlets.CrossOriginFilter</filter-
class>
</filter>
<filter-mapping>
 <filter-name>cross-origin</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

If you happen to have a different version of Jetty, or you have deployed
your GeoServer in Tomcat, please refer to: http://enable-cors.org/ for
detailed instructions on how to enable CORS.

At this stage, our server should be CORS-enabled and our cross origin AJAX examples
should work as expected without having to use a pass-through proxy in order to connect to
a service located in a different domain.

Consuming WFS in ol3
Leaflet does not read WFS, so our WFS example will be OpenLayers only. Consuming WFS
means reading, retrieving, and rendering vector data on the client side. Such processes may
be intensive on PC resources - we will therefore use a rather small dataset with the
ne_reefs vector so we do not have to bother with performance issues when dealing with
larger vector datasets.

http://repo1.maven.org/maven2/org/eclipse/jetty/jetty-servlets/
http://repo1.maven.org/maven2/org/eclipse/jetty/jetty-servlets/9.2.13.v20150730/jetty-servlets-9.2.13.v20150730.jar
http://repo1.maven.org/maven2/org/eclipse/jetty/jetty-servlets/9.2.13.v20150730/jetty-servlets-9.2.13.v20150730.jar
http://enable-cors.org/

PostGIS – Creating Simple WebGIS Applications

[216]

There are different techniques for dealing with large datasets, such as the
bounding box strategy, mixing WMS for smaller scales, displaying with
WFS for larger scale display, and using vector tiles. Those are not specific
to the data source as such, and therefore I will not elaborate on the subject.

Our web example will be very similar to the previous one with WMS only. The different
part is the layers declaration:

createLayers: function(){
 var proj = ol.proj.get('EPSG:4326');
 format = new ol.format.WFS(),
 wfsVectorSource = new ol.source.Vector({
 projection: proj,
 loader: function(extent, resolution, projection) {
 Ext.Ajax.request({
 cors: true,
 url: 'http://localhost:8080/geoserver/wfs?
 service=WFS&request=GetFeature&version=1.1.0&' +
 'typename=mastering_postgis:ne_reefs&'+
 'srsname=EPSG:4326&' +
 'bbox=' + extent.join(',') + ',EPSG:4326'
 })
 .then(function(response){
 //rad the features
 var features =
 format.readFeatures(response.responseText),
 f = 0, flen = features.length;

 //and make sure to swap the coords...
 for(f; f < flen; f++){
 features[f].getGeometry().applyTransform(function
 (coords, coords2, dimension) {
 var c = 0, clen = coords.length,
 x,y;
 for (c; c < clen; c += dimension) {
 y = coords[c]; x = coords[c + 1];
 coords[c] = x; coords[c + 1] = y;
 }
 });
 }
 wfsVectorSource.addFeatures(features);
 });
 },
 //this will make the map request features per tile boundary
 strategy: ol.loadingstrategy.tile(ol.tilegrid.createXYZ({
 extent: proj.getExtent(),
 maxZoom: 8

PostGIS – Creating Simple WebGIS Applications

[217]

 })),
 attributions: [
 new ol.Attribution({
 html: 'Mastering PostGIS - GeoServer WFS'
 })
]
 });

 return [
 (...WMS Layer declaration),
 new ol.layer.Vector({
 source: wfsVectorSource,
 style: style: (...style declaration...)
 })
];
}

The preceding code is a bit more complex than a simple WMS layer declaration, as we need
to declare a format object that can read the GML returned by the WFS services, and also,
since a vector loading strategy is used, we need a loader function for it. If this was not
enough, we need to do some coordinate swapping as EPSG:4326 reverses the axis order.

We now need to navigate to the example's folder, run sencha app watch, and navigate to
http://localhost:1841/apps/04_ol3_wfs/. You should see a similar output to the
following:

PostGIS – Creating Simple WebGIS Applications

[218]

Outputting and consuming GeoJSON
GML output may be considered by many as not too user-friendly, as XML in general is
supposed to be machine readable, but not necessarily human readable (although once one
gets used to it - it is not that scary anymore). Luckily, servers such as GeoServer can output
data in GeoJSON. This makes things way easier, not only from the perspective of the user
looking at the output, but also when it comes to coding the layers that consume it.

This time we will plug in some earthquake data - we will need the data we imported in
Chapter 1, Importing Spatial Data, but this time let's put it into the webgis.earthquakes
table.

If you happen to have removed the data from the imported_data
schema, you will have to reimport the dataset. Otherwise, you can simply
copy the data over with select * into webgis.earthquakes from
imported_data.earthquakes_subset_with_geom.

Next, make sure to expose the data as a mastering_postgis:earthquakes layer and we
are ready to roll.

Even though we consume GeoJSON now, the service we request data from
is still WFS.

Consuming GeoJSON in ol3
GeoJSON layer declaration in ol3 is way simpler than what we had to do with WFS. This
time, BBOX strategy is used to load the data for whatever area is visible on the map:

createLayers: function(){

 var proj = ol.proj.get('EPSG:4326');

 return [
 (...WMS Layer declaration),
 new ol.layer.Vector({
 //projection: proj,
 source: new ol.source.Vector({
 format: new ol.format.GeoJSON(),
 url: function(extent) {
 return 'http://localhost:8080/geoserver/wfs?service=WFS&' +
 'version=1.1.0&request=GetFeature&typename=mastering

PostGIS – Creating Simple WebGIS Applications

[219]

 _postgis:earthquakes&' +
 'outputFormat=application/json&srsname=EPSG:4326&' +
 'bbox=' + extent.join(',') + ',EPSG:4326';
 },
 strategy: ol.loadingstrategy.bbox,
 attributions: [
 new ol.Attribution({
 html: 'Mastering PostGIS - GeoServer GeoJSON'
 })
]
 }),
 style: (...style declaration...)
 })
];
}

We now need to navigate to the example's folder, run sencha app watch, and navigate to
http://localhost:1841/apps/05_ol3_geojson/. You should see a similar output to
the following:

PostGIS – Creating Simple WebGIS Applications

[220]

Consuming GeoJSON in Leaflet
The Leaflet GeoJSON layer does not retrieve the data automatically and therefore we need
to obtain it ourselves. Once data is present, we can load it with the following code:

loadGeoJSON: function(map){
 Ext.Ajax.request({
 cors: true,
 url: 'http://10.0.0.19:8080/geoserver/wfs?service=WFS&' +
 'version=1.1.0&request=GetFeature&typename=
 mastering_postgis:earthquakes&' +
 'outputFormat=application/json&srsname=EPSG:4326&' +
 'bbox=-180,-90,180,90,EPSG:4326'
 }).then(function(response){
 L.geoJson(Ext.JSON.decode(response.responseText).features, {
 pointToLayer: function (feature, latlng) {
 return L.circleMarker(latlng, {
 radius: feature.properties.mag * 5,
 fillColor: '#993366',
 weight: 1
 });
 }
 }).addTo(map);
 });
},

PostGIS – Creating Simple WebGIS Applications

[221]

As you can see, it is way simpler than consuming GeoJSON in ol3. We now need to
navigate to the example's folder, run sencha app watch, and navigate to
http://localhost:1841/apps/06_leaflet_geojson/. You should see a similar
output to the following:

Outputting and consuming TopoJSON
Since we're consuming vectors in a browser, let's have a look at TopoJSON too. TopoJSON
is an extension of GeoJSON--the main difference is it encodes geometries shared by
multiple features only once, so it is possible to reduce the footprint of the returned data. It is
a popular format when it comes to serving vector tiles too. We will not get into detail on
how to set up our own tile server; instead we will make our PostGIS output the data for us.

There is a GeoServer plugin for exposing TopoJSON called vector tiles;
some Node modules that can do the job are also available--just search npm
for TopoJSON.

PostGIS – Creating Simple WebGIS Applications

[222]

Let's get some data into the database first: download
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/50m/cul

tural/ne_50m_admin_0_countries.zip and load it into the webgis.countries table:

shp2pgsql -s 4326 ne_50m_admin_0_countries webgis.countries | psql -h
localhost -p 5434 -U postgres -d mastering_postgis

We will need to process the data before we can use the topology.AsTopoJSON function
because it accepts topo geometry. So let's do the data preparation first:

--creates a new topology schema and registers it in the topology.topology
table
select topology.CreateTopology('topo_countries', 4326);

--a new table that will hold topogeom
create table webgis.countries_topo(git serial primary key, country
varchar);
--add topogeom col to a table and registers it as a layer in the
topology.layer table
select topology.AddTopoGeometryColumn('topo_countries', 'webgis',
'countries_topo', 'topo', 'MULTIPOLYGON');

--this will convert the original country geoms into topo geoms
insert into webgis.countries_topo (country, topo)
select
 name,
 topology.toTopoGeom(
 geom,
 'topo_countries',
 --third param is topology layer identifier; we obtain it
automatically based on our topology name
 (select layer_id from topology.layer where schema_name = 'webgis'
and table_name = 'countries_topo' limit 1),
 0.00001 --note: precision param. needed, so we avoid problems with
invlaid geoms
)
from
 webgis.countries;

The preceding query simply prepares a new table with topo geometry based on the original
geometry imported from a shapefile. Once our topo geometry is ready, we can move on to
generating TopoJSON.

http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/50m/cultural/ne_50m_admin_0_countries.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/50m/cultural/ne_50m_admin_0_countries.zip

PostGIS – Creating Simple WebGIS Applications

[223]

The following code is a simple adaptation of the example presented on the
AsTopoJSON function documentation page
(http://postgis.net/docs/manual-dev/AsTopoJSON.html). It adds a file export and does
some cleanup too, so we do not leave the mess behind:

DROP TABLE IF EXISTS edgemap;
CREATE TEMP TABLE edgemap(arc_id serial, edge_id int unique);

DROP TABLE IF EXISTS topojson;
CREATE TEMP TABLE topojson(json_parts varchar);

INSERT INTO topojson

-- header
SELECT '{ "type": "Topology", "transform": { "scale": [1,1], "translate":
[0,0] }, "objects": {'

-- objects already stitched together
UNION ALL select array_to_string(array_agg(json_parts), E', ')
from (SELECT '"' || country || '": ' || topology.AsTopoJSON(topo,
'edgemap') as json_parts
 FROM webgis.countries_topo) as json_parts;

-- arcs
WITH edges AS (
 SELECT m.arc_id, e.geom FROM edgemap m, topo_countries.edge e
 WHERE e.edge_id = m.edge_id
), points AS (
 SELECT arc_id, (st_dumppoints(geom)).* FROM edges
), compare AS (
 SELECT p2.arc_id,
 CASE WHEN p1.path IS NULL THEN p2.geom
 ELSE ST_Translate(p2.geom, -ST_X(p1.geom), -ST_Y(p1.geom))
 END AS geom
 FROM points p2 LEFT OUTER JOIN points p1
 ON (p1.arc_id = p2.arc_id AND p2.path[1] = p1.path[1]+1)
 ORDER BY arc_id, p2.path
), arcsdump AS (
 SELECT arc_id, (regexp_matches(ST_AsGeoJSON(geom), '\[.*\]'))[1] as t
 FROM compare
), arcs AS (
 SELECT arc_id, '[' || array_to_string(array_agg(t), ',') || ']' as a FROM
arcsdump
 GROUP BY arc_id
 ORDER BY arc_id
)

http://postgis.net/docs/manual-dev/AsTopoJSON.html

PostGIS – Creating Simple WebGIS Applications

[224]

INSERT INTO topojson

SELECT '}, "arcs": [' UNION ALL
SELECT array_to_string(array_agg(a), E', ') from arcs

-- json footer part
UNION ALL SELECT ']}'::text;

--finally dump the topojson
COPY (SELECT array_to_string(array_agg(json_parts), E' ') FROM (SELECT
json_parts FROM topojson) AS json_parts) TO 'f:\topojson.json';

--cleanup the temp stuff
DROP TABLE IF EXISTS edgemap;
DROP TABLE IF EXISTS topojson;

At this stage, our TopoJSON file should be ready, so the final thing is to display it on a map.

You may actually want to test the output first - if so, simply upload the file
to h t t p ://g e o j s o n . i o /.

Consuming TopoJSON in ol3
So let's code an ol3 example. Once again, we are merely modifying a layer definition:

new ol.layer.Vector({
 //projection: proj,
 source: new ol.source.Vector({
 format: new ol.format.TopoJSON(),
 url: 'data/topojson.json',
 attributions: [
 new ol.Attribution({
 html: 'Mastering PostGIS - TopoJSON'
 })
]
 }),
 style: [
 new ol.style.Style({
 stroke: new ol.style.Stroke({
 color: 'rgba(0, 0, 0, 1)',
 width: 0.5
 })
 })
]

http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/
http://geojson.io/

PostGIS – Creating Simple WebGIS Applications

[225]

})

Because we need the JSON to be read by our application, make sure that
the file is available under data/topojson.json in the root of our web
example.

In order to preview the example, navigate to the example's folder, run sencha app watch,
and navigate to http://localhost:1841/apps/07_ol3_topojson/. You should see a
similar output to the following:

Consuming TopoJSON in Leaflet
By now, you should expect the Leaflet examples to be rather compact and easy to
understand. You are going to be surprised though when you see that consuming a
TopoJSON layer in Leaflet is a matter of one line:

omnivore.topojson('data/topojson.json').addTo(map);

PostGIS – Creating Simple WebGIS Applications

[226]

In order to achieve this though, we need a MapBox Leaflet plugin called omnivore. You can
get some more information on it here:
https://www.mapbox.com/mapbox.js/example/v1.0.0/omnivore-topojson/.

Because we need the JSON to be read by our application, make sure that
the file is available under data/topojson.json in the root of our web
example.

The exact source code of the example is a bit longer, as there is a style declaration and I feed
the TopoJSON to a GeoJSON layer, so the style can be applied.

In order to preview the example, navigate to the example's folder, run sencha app watch,
and navigate to http://localhost:1841/apps/08_leaflet_topojson/. You should
see a similar output to the following:

https://www.mapbox.com/mapbox.js/example/v1.0.0/omnivore-topojson/

PostGIS – Creating Simple WebGIS Applications

[227]

Implementing a simple CRUD application
that demonstrates vector editing via web
interfaces
Our final example in this chapter demonstrates some simple spatial CRUD functionality.
CRUD stands for Create, Read, Update, Destroy, so to put it simply we'll edit some features
on the map. We will do it using ol3.

WebGIS CRUD server in Node.js
In order to expose our crud API, we will need some storage for our features, so let's start
with creating a table of the geometries first:

create table webgis.crud (id serial NOT NULL, geom geometry);

Once this is ready, we will need a simple web server to handle our CRUD operations. Let's
take care of that.

First, we need to put some packages in place:

npm install express --save
npm install body-parser --save
npm install pg --save

Once the appropriate packages are installed, let's create our server:

const pg = require("pg");
const express = require('express');
const app = express();

const bodyParser = require('body-parser');

// configure app to use bodyParser() so we can get data from POST & PUT
app.use(bodyParser.urlencoded({ extended: true }));
app.use(bodyParser.json());

const dbCredentials = {
 host: 'localhost',
 port: 5434,
 user: 'postgres',
 password: 'postgres',
 database: 'mastering_postgis'
};

PostGIS – Creating Simple WebGIS Applications

[228]

//express server
const server = app.listen(8082, () => {
 console.log(`WebGIS crud server listening at
http://${server.address().address}:${server.address().port}`);
});

/**
 * enable CORS
 */
app.use((req, res, next) => {
 res.header("Access-Control-Allow-Origin", "*");
 res.header("Access-Control-Allow-Headers", "Origin, X-Requested-With,
Content-Type, Accept");
res.header("Access-Control-Allow-Methods", "POST, GET, PUT, DELETE,
OPTIONS");
 next();
});

//prefix all the routes with 'webgisapi'
let router = express.Router();
app.use('/webgisapi', router);

/**
 * errorneus response sending helper
 */
const sendErrorResponse = (res, msg) => {
 res.statusCode = 500;
 res.end(msg);
}

This is a fully operational Express server, although in order to make it work for us we will
need some logic to handle our requests, so let's create it.

Read method:

router.route('/features').get((req, res) => {

 //init client with the appropriate conn details
 let client = new pg.Client(dbCredentials);

 client.connect(function(err){
 if(err){
 sendErrorResponse(res, 'Error connecting to the database: ' +
 err.message);
 return;
 }

 //once connected we can now interact with a db

PostGIS – Creating Simple WebGIS Applications

[229]

 client.query('SELECT id, ST_AsText(geom) as wkt FROM webgis.crud;',
 (err, result) => {
 //close the connection when done
 client.end();

 if(err){
 sendErrorResponse(res, 'Error reading features: ' +
 err.message);
 return;
 }

 if(result.rows.length === 0){
 res.statusCode = 404;
 }
 else {
 res.statusCode = 200;
 }

 res.json(result.rows);
 });
 });
});

When you visit http://localhost:8082/webgisapi/features now, you should get
the content of our database, although it is going to be just an empty array. Also, the
response code for no results will be 404 - not found.

Create method:

router.route('/features').post((req, res) => {
 //init client with the appropriate conn details
 let client = new pg.Client(dbCredentials);

 client.connect((err) => {
 if(err){
 sendErrorResponse(res, 'Error connecting to the database: ' +
 err.message);
 return;
 }

 //extract wkt off the request
 let wkt = req.body.wkt;

 //once connected we can now interact with a db
 client.query('INSERT INTO webgis.crud (geom) values
 (ST_GeomFromText($1, 4326)) RETURNING id;',[wkt], (err, result) =>
{
 //close the connection when done

PostGIS – Creating Simple WebGIS Applications

[230]

 client.end();

 if(err){
 sendErrorResponse(res, 'Error reading features: ' +
 err.message);
 return;
 }

 res.statusCode = 200;
 res.json({id: result.rows[0].id, wkt: wkt});
 });
 });
});

The update method is very similar to the create code that we just wrote. Let's have a look at
it now:

router.route('/features/:feature_id').put((req, res) => {
 //init client with the appropriate conn details
 let client = new pg.Client(dbCredentials);

 client.connect((err) => {
 if(err){
 sendErrorResponse(res, 'Error connecting to the database: ' +
 err.message);
 return;
 }

 //extract wkt off the request and id off the params
 let wkt = req.body.wkt;
 let id = req.params.feature_id;

 //once connected we can now interact with a db
 client.query('UPDATE webgis.crud set geom = ST_GeomFromText($1,
 4326) where id = $2;',[wkt, id], (err, result) => {
 //close the connection when done
 client.end();

 if(err){
 sendErrorResponse(res, 'Error reading features: ' +
 err.message);
 return;
 }

 res.statusCode = 200;
 res.json({id: id, wkt: wkt});
 });
 });

PostGIS – Creating Simple WebGIS Applications

[231]

});

As you may expect already, the Destroy method is also going to be very simple:

router.route('/features/:feature_id').delete((req, res) => {
 //init client with the appropriate conn details
 let client = new pg.Client(dbCredentials);

 client.connect((err) => {
 if(err){
 sendErrorResponse(res, 'Error connecting to the database: ' +
 err.message);
 return;
 }

 //extract id off the params
 let id = req.params.feature_id;

 //once connected we can now interact with a db
 client.query('DELETE FROM webgis.crud where id = $1;',[id], (err,
 result) => {
 //close the connection when done
 client.end();

 if(err){
 sendErrorResponse(res, 'Error reading features: ' +
 err.message);
 return;
 }

 res.statusCode = 200;
 res.json({id: id, wkt: wkt});
 });
 });
});

PostGIS – Creating Simple WebGIS Applications

[232]

We have one API method to do before we can consider it complete. This time, we are after
buffering geometry passed from the client:

router.route('/features/buffers').post((req, res) => {
 //init client with the appropriate conn details
 let client = new pg.Client(dbCredentials);

 client.connect((err) => {
 if(err){
 sendErrorResponse(res, 'Error connecting to the database: ' +
 err.message);
 return;
 }

 //extract wkt off the request
 let wkt = req.body.wkt;
 let buffer = req.body.buffer;

 //once connected we can now interact with a db
 client.query('SELECT ST_AsText(ST_Buffer(ST_GeomFromText($1, 4326),
 $2)) as buffer;',[wkt, buffer], (err, result) => {
 //close the connection when done
 client.end();

 if(err){
 sendErrorResponse(res, 'Error reading features: ' +
 err.message);
 return;
 }

 res.statusCode = 200;
 res.end(result.rows[0].buffer);
 });
 });
});

As you can see, implementing a barebones CRUD backend for our spatial database is not
very difficult. Obviously, we do not handle permissions; there is no authentication, security,
and so on. This should be implemented before deploying the application for others to use.
Luckily, we can remain with our toys in a sandbox.

PostGIS – Creating Simple WebGIS Applications

[233]

WebGIS CRUD client
In order to preview the example, navigate to the example's folder, run sencha app watch,
and then navigate to http://localhost:1841/apps/09_crud/. You should see a similar
output to the following:

Our web editing functionality is implemented in ol3. This is because ol3 provides some
ready-to-use, out-of-the box classes that can be used to quickly implement the WebGIS
experience. Web editing is obviously possible in Leaflet too, but requires obtaining some
plugins that extend Leaflet appropriately.

If you happen to like Leaflet more than ol3, nothing is lost. The code accompanying this
example has been separated in a way; the db data exchange part is generic and can be used
by code other than based on ol3. Also, I have created a Leaflet app stub so you have
something to start with.

The client application can be split into functional parts that are going to be discussed next:

Layer manager
CRUD tools
Analytical toolset

PostGIS – Creating Simple WebGIS Applications

[234]

Because handling the UI interactions does not really involve the database, and rather
focuses on gathering the user input and passing it on to the API for processing, the client-
side code will be limited, so you can get an idea of what is going on, without having to
review the full logic. It is advised that you review the accompanying source code in order to
get the insight.

Layer manager
We already saw the layer declarations for some different types of underlying data. A
WebGIS application is usually tasked with working with multiple layers, so having a layer
manager of some sort seems to be a reasonable requirement. We're not going to be getting
into details about how this has been achieved as it is simply down to showing a couple of
checkboxes that turn layers on/off. Also, the source code is available so you can check it out
easily. Our manager is a static one - it does not allow layer reordering. After all, our
application is meant to be rather simple.

Drawing tools
OpenLayers3 has some controls that provide functionality such as drawing features,
modifying features, or selecting them. Our examples use three such controls in different
combinations: ol.interaction.Draw, ol.interaction.Select, and
ol.interaction.Modify. The names are self-explanatory, so let's see how the feature
add' functionality is implemented:

onBtnAddToggle: function(btn, state){
 this.clearMapInteractions();
 if(!state){
 return;
 }

 this.currentInteractions = {
 draw: new ol.interaction.Draw({
 type: 'Polygon',
 source: this.vectorLayer.getSource()
 })
 };
 this.currentInteractions.draw.on('drawend', this.onDrawEnd, this);

 this.map.addInteraction(this.currentInteractions.draw);
}

PostGIS – Creating Simple WebGIS Applications

[235]

The logic starts with a call to a function that takes care of disabling any controls that may
have been active before. Then, if the Add feature button has been depressed, a Draw
interaction is created and added to the map. A drawend event is wired up to the control so
we can react whenever a feature has been added:

onDrawEnd: function(e){
 this.saveFeature({
 wkt: this.getWktFormat().writeGeometry(e.feature.getGeometry())
 });
}

When a feature has been created, it is redirected to a proxy class that is responsible for
handling the actual save procedure.

Editing a feature uses two controls - select interaction and modify interaction - so the user
can first select a feature, and then edit it:

onBtnEditToggle: function(btn, state){
 this.clearMapInteractions();

 if(!state){
 return;
 }

 var select = new ol.interaction.Select({
 layers: [this.vectorLayer],
 style: this.getEditSelectionStyle()
 });
 this.currentInteractions = {
 select: select,
 modify: new ol.interaction.Modify({
 features: select.getFeatures(),
 style: this.getEditStyle()
 })
 };

 this.currentInteractions.select.on('select', this.onModifyStartEnd,
 this);

 this.map.addInteraction(this.currentInteractions.select);
 this.map.addInteraction(this.currentInteractions.modify);
}

PostGIS – Creating Simple WebGIS Applications

[236]

As you can see, the editing functionality setup is quite easy too. This time we instantiate
select and modify interactions, but listen only to the select event. This is because it is
assumed that an edit starts once a feature is selected and it ends once the user decides to
deselect the feature:

onModifyStartEnd: function(e){
 console.warn('[ol3] - modify start/end', e);

 if(e.selected.length > 0){
 //this is a select so just a start of edit
 //simply store a wkt on a feature so can compare it later and
 decide if an edit should happen
 e.selected[0].tempWkt =
 this.getWktFormat().writeGeometry(e.selected[0].getGeometry());
 return;
 }

 var f = e.deselected[0],
 modifiedWkt = this.getWktFormat().writeGeometry(f.getGeometry());

 if(f.tempWkt === modifiedWkt){
 console.warn('[ol3] - modify end - feature unchanged');
 return;
 }

 console.warn('[ol3] - modify end - saving feature...');

 this.saveFeature({
 id: f.get('id'),
 wkt: modifiedWkt
 });
}

We can arrive in the select handler in two scenarios: when a user either selects or
deselects a feature. On select, a snapshot of the feature geometry is taken so it can be
compared with another snapshot taken when handling deselect. If the geometry has
changed, the modified object is delegated to our proxy class for saving:

saveFeature: function(f){

 console.warn('[CRUD PROXY] - saving...', f);

 Ext.Ajax.request({
 cors: true,
 url: isNaN(f.id) ? apiEndPoint : (apiEndPoint + f.id),
 method: isNaN(f.id) ? 'POST' : 'PUT',
 success: Ext.bind(this.onSaveSuccess, this),

PostGIS – Creating Simple WebGIS Applications

[237]

 failure: Ext.bind(this.onSaveFailure, this),
 params: f
 });
}

Depending on ID presence, we send out either a POST request (creating a feature) or a PUT
request (modifying a feature). For the sake of simplicity, once an operation succeeds, the
map data is fully reloaded. This is far from being optimal, but lets us avoid syncing feature
state.

The delete control is very similar to what we saw when editing, it doesn't use the modify
interaction though. Whenever a user selects a feature, they are asked if they wish to remove
a feature and if so, a DELETE request is made to the server. When finished, our feature set is
re-read from the database.

Analysis tools - buffering
There are many analytics tools available in PostGIS, so buffering may seem a bit dull. On
the other hand, it is a common example and it is simple enough to let us focus on how to
use it in web realms. Thanks to that, we can quickly demonstrate a simple logic that can
later be scaled into some more sophisticated tools.

Our buffer functionality is almost the same as the delete functionality. It uses the same type
of interaction - select interaction - but instead of asking the user for a confirmation, it
prompts the user to input a buffer size in degrees. Once the data is collected, a POST
request is sent to the server, which replies with a WKT encoded buffer geometry.

Summary
I hope that this chapter has demystified WebGIS a bit. Having a powerful tool watch our
backs (PostGIS of course!) is a good starter to writing our very own web-based GIS
applications.

We have managed to touch upon many different tools in this chapter; we have also written
our own WMS server and REST API, and consumed both along with GeoServer services.
This is quite a lot, even though our examples are simple and focused.

When outputting TopoJSON we have touched topo geometry; if this seemed a bit
unfamiliar stay tuned - the next chapter is all about PostGIS topology.

8
PostGIS Topology

PostGIS originally implemented only the Simple Features model for storing vector data. In
this model, every feature is a distinct entity, and any topological relationships between
them aren't explicitly stored in a database. For some use cases, this data model is not a good
fit. Two notable examples include boundary data and network data. In boundary data,
shared lines between adjacent features aren't really shared: the features are stored as
separate polygons and the same set of vertices is stored twice. In network data, the database
doesn't store any information about shared nodes. This makes spatial analysis harder
(relationships have to be checked on a vertex-by-vertex basis, which is time-consuming).
Even worse, editing or simplification of data can lead to inconsistencies, including gaps
between contiguous polygons, overlapping polygons, or disconnected lines.

To address these issues, a topology model for PostGIS has been introduced. In a topological
model, spatial relationships between connected features are explicitly modeled. The
topology extension has been around since version 1.1, but in PostGIS 2.0 it became a first-
class citizen, fully functional and included in a standard installation. In this chapter, we will
discuss the features and use of the PostGIS topology extension for storing and processing
geospatial data.

The conceptual model
Before we start working with topology, we need to discuss the key concepts behind the
PostGIS topological data model. PostGIS topology implementation is based on ISO standard
13249 - Information technology - Database languages - SQL multimedia and application packages -
Part 3: Spatial. The standard name is often abbreviated as ISO SQL/MM. This standard
defines two data models for topology: TopoGeometry and TopoNetwork; PostGIS
implements only the former.

PostGIS Topology

[239]

In this model, there are three kinds of elements/primitives used to compose geospatial
features: nodes, edges, and faces.

Nodes are point features. They can exist on their own (isolated nodes) or serve as
connection points for linear features (the edges). For example, this is a Czech-Polish-Slovak
tripoint near Jaworzynka village, which contains a node and three edges:

An example of topological data: a node and three edges

In topology, only one node can appear for a specified coordinate pair - if there are more
nodes in the same place, the topology is invalid.

If you are familiar with the OpenStreetMap data model, which is also
topological, note that only intersections - and not all vertices - are
considered nodes in PostGIS. If you are familiar with network data
models, note that node cardinality (that is, how many edges are connected
to a node) is not stored in a database, but it can be retrieved using a non-
spatial SQL query.

Edges are linear features. They must start precisely at one node and end at another node;
both nodes' IDs are stored in a database. If there is a mismatch between the node ID and its
position, or if an edge crosses a node without ending, the topology is considered invalid.

PostGIS Topology

[240]

Faces are used to represent polygons. Their precise geometry is not stored, only the
polygon's bounding boxes, called MBR from Minimum Bounding Rectangle, are stored.
Instead, the left_face and right_face columns in the edge_data table are used to
determine the geometry of the faces. Faces must not overlap or be contained within another
face.

The data
In this chapter, a few data sources will be used as examples. All these sources are freely
available on the Internet.

For the data model explanation and first processing examples, we will use the Natural Earth
national borders data, specifically the Admin 0 - countries layer. It is available for
download at h t t p ://w w w . n a t u r a l e a r t h d a t a . c o m /d o w n l o a d s /10m - c u l t u r a l - v e c t o r s /.

The data simplification topic will be discussed using the Czech hydrological dataset, called
DIBAVOD. It is considered public information and is therefore free to download and reuse.
The data can be downloaded from h t t p ://w w w . d i b a v o d . c z /i n d e x . p h p ?i d =27. We'll need
the following layer (download links are visible after expanding the A section): A08 -
hydrologické členění - povodí III.řádu - the watershed dataset.

There is also a more detailed version - the A07 dataset with fourth-order
watersheds. It can be also used, but it will take more time to process.

Installation
The topology extension is not enabled automatically with basic PostGIS functionality. In
order to use topology functions, they have to be activated using a PostgreSQL CREATE
EXTENSION statement:

CREATE EXTENSION postgis_topology;

This will add topology functions to a database, and create metadata tables in it. Let's have a
closer look at them.

http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27
http://www.dibavod.cz/index.php?id=27

PostGIS Topology

[241]

We can see a newly created topology schema. It contains topology functions and two
metadata tables:

Topology: Storing information about separate topologies in a database
Layer: Storing information about topological layers

A topology in PostGIS is a collection of topological elements (nodes, edges, and faces) with
specified precision, coordinate system, and dimensionality (2D or 3D). Every topology is
stored in a separate schema. A layer is a relationship between topology and a feature table.
Each topology can have zero or more layers, and same topological elements can be used in
more than one layer - which is useful for hierarchical data, such as administrative division
or higher-order watersheds.

As the topology features are encapsulated in separate schemas other than
public, they aren't accessible to any unprivileged database user by default.
It's necessary to grant USAGE and CREATE privileges on those schemas, and
EXECUTE privileges on topology schema functions to any non-superuser
who needs to use topology features.

Topology functions in PostGIS can be divided into two groups: those that are defined by the
ISO standard, and those specific to PostGIS. Standard functions are prefixed with ST_ while
the non-standard functions aren't (this is a convention similar to one used by MS SQL
Server). Sometimes, standard and non-standard functions have similar functionality, and
the ST_ variant exists purely for standard conformance. For detailed usage of topology
functions, read on.

Creating an empty topology
After installing the topology extension, one more preparation step is needed before we can
work with data: a new, empty topology has to be created. There are two functions for this:
topology.ST_InitTopoGeo and topology.CreateTopology. The former is defined by
the ISO standard, and accepts only one argument: the topology name. The latter is a non-
standard version that allows the definition of additional parameters: the snapping
tolerance, SRID, and dimensionality. Let's use the non-standard version:

SELECT topology.CreateTopology('my_topology', 4326, 0.00028, FALSE);

The first argument defines the topology name, the second is SRID (in this case, WGS84), the
third specifies the precision (in this case, 1 arc-second, which is about 30 meters at the
equator), and the fourth determines whether the topology should store Z-coordinates.

PostGIS Topology

[242]

As a result, the function should return the integer ID of the newly created topology. Let's
have a look at the database structure now:

Newly registered topology

In the topology schema, the newly created topology is registered in
the topology.topology metadata table with parameters we have previously supplied as
function arguments.

The new schema, called my_topology, has appeared. It contains the following
tables: edge_data, face, node and relation.

It also contains an edge view, which contains a subset of the edge_data columns:

The database schema for topology

PostGIS Topology

[243]

The relation table is a typical many-to-many relationship table, which connects topology
elements with respective TopoGeometries in a feature table. The element_type column
denotes the table where related elements reside: 1 is for node, 2 for edge, and 3 for face.
Usually there's no need (and it's not recommended) to manipulate this table directly
because the topology functions will take care of it.

These tables are now empty, as no data has been stored so far. We will populate them in
the next section.

Importing Simple Feature data into topology
PostGIS can convert Simple Feature geometries into topology. Let's assume a countries table
containing country boundaries from the Natural Earth dataset, with a geometry column
named geom, and the WGS84 coordinate system.

Checking the validity of input geometries
The first step is to check the validity of input geometries. PostGIS will refuse to convert
invalid geometries to topology elements, so it's very important to fix them or filter them
out. We will use the ST_IsValidReason and ST_IsValid functions that we learned in
Chapter 1, Importing Spatial Data:

SELECT ST_IsValidReason(geom) FROM countries WHERE ST_IsValid(geom) =
FALSE;

Luckily, in this case the query returned 0 rows, meaning that all geometries are valid, so we
can proceed to the next step.

It may happen that invalid geometries sneak into some revised version of
Natural Earth, in which case the query will return a non-zero result. In
that case, the invalid geometries must be repaired with the tools outlined
in Chapter 1, Importing Spatial Data, or deleted before proceeding.

PostGIS Topology

[244]

Creating a TopoGeometry column and a topology
layer
TopoGeometry is a special data type. It doesn't store real geometry, merely an array of
topological elements' IDs, but it can be visualized in GIS software, or used in spatial SQL
queries, like an ordinary Simple Feature geometry, which will be composed on the fly. A
new TopoGeometry column is created with a non-standard
topology.AddTopoGeometryColumn function. It accepts the following arguments:

topology_name: Denoting the name of topology which should be linked with
the feature data
schema_name: Name of schema where the feature table resides
table_name: Name of the feature table
column_name: Name for the newly created TopoGeometry column
geometry_type: Geometry type for newly created TopoGeometry, one of:
POINT, LINE, POLYGON, COLLECTION

For our example, the SQL statement will look like this:

SELECT
topology.AddTopoGeometryColumn('my_topology','public','countries','topogeom
','POLYGON');

After executing, a new row appears in the topology.layer table:

A topology layer registered in a metadata table

Also, a new column, topogeom, is added to the public.countries table. But for now, all
rows have NULL values there. To populate the newly created TopoGeometry column from
an existing Geometry, another function has to be used.

PostGIS Topology

[245]

Populating a TopoGeometry column from an
existing geometry
The conversion function is called topology.toTopoGeom, and it accepts the following
arguments:

geom: Input geometry column
toponame: Name of topology
layer_id: ID of topology layer (it's returned by the
topology.AddTopoGeometry function, and can be checked in
the topology.layer table)
tolerance: Snapping tolerance for conversion

The statement for our data will be as follows:

UPDATE countries SET topogeom =
topology.toTopoGeom(geom,'my_topology',1,0.00028);

The conversion is a time-consuming process. For Natural Earth data, i7 CPU, 8 GB of RAM
and a SSD, it took 6.5 minutes to complete. For bigger datasets, the process can take hours.

The conversion step can be used to fix some minor inconsistencies in non-topological data:
unconnected lines or silver polygons. The errors will be corrected up to the tolerance
parameter, that is, in our case, if lines are closer than 1 arc-second apart, they will become
connected.

Now we can inspect the database again. The topological element tables (nodes, edge_data,
and faces) were populated, and can be visualized in QGIS.

Note that, QGIS has a handy tool called TopoViewer. To use it, open DB Manager from the
database main menu, select a my_topology schema, and pick TopoViewer from the
Schema menu. This will add all topology elements to the map view, show the edge
directionality, and label the elements' IDs:

PostGIS Topology

[246]

Topology visualized with QGIS TopoViewer

If everything is correct, it's time to DROP an existing Simple Feature geometry column: it will
not be updated as the underlying topology changes. Instead, the new TopoGeometry
column can be used (but not edited) in GIS software as though it was an ordinary geometry
column, thanks to PostgreSQL's autocast feature:

ALTER TABLE countries DROP COLUMN geom;

Inspecting and validating a topology
After creating and populating a topology, the information is stored in multiple database
tables. Luckily, PostGIS has a function for getting synthetic information about a given
topology and its components: it's called topology.TopologySummary. It accepts one
argument, the name of the topology in question:

SELECT topology.TopologySummary('my_topology');
 topologysummary

Topology my_topology (id 2, SRID 4326, precision 0.00028)
4567 nodes, 4765 edges, 4257 faces, 255 topogeoms in 1 layers
Layer 1, type Polygonal (3), 255 topogeoms
 Deploy: public.countries.topogeom

(1 row)

PostGIS Topology

[247]

In return, the function will print out the topology metadata (ID, SRID, and precision), the
number of topology elements of each type, the number of layers, their ID, the geometry
type, and the number of features in each layer.

Topology metadata can also be retrieved individually. There are three functions:

topology.GetTopologyID: Given a topology name, returns its ID in a
topology.topology table
topology.GetTopologySRID: Given a topology name, returns its SRID
topology.GetTopologyName: Given a topology ID, returns its name

Topology validation
A topology can be validated using the topology.ValidateTopology function. It takes
one argument, the topology name. The computation is quite resource-hungry, so it can take
some time to complete (but not as much as creating a topology from Simple Features takes).

The syntax for validating our topology is as follows:

SELECT topology.TopologySummary('my_topology');

After executing, if any errors are found, they are returned in a special composite type:
validatetopology_returntype. This type consists of three parts:

error, of type varchar, which contains a human-readable error message
id1, of type integer, which contains the ID of the first problematic element
id2, of type integer, which contains the ID of a second problematic element (if
any)

Possible errors are as follows:

Coincident nodes
Edge crosses node
Edge not simple
Edge end node geometry mismatch
Edge start node geometry mismatch
Face overlaps face
Face within face

PostGIS Topology

[248]

Accessing the topology data
Elements used to compose TopoGeometries can be retrieved by manually querying the
topology tables, but PostGIS provides specialized functions for that purpose. First, we will
find topological elements of Poland using the topology.GetTopoGeomElements function:

SELECT topology.GetTopoGeomElements(topogeom) FROM countries WHERE
name='Poland';

 gettopogeomelements

 {3155,3}

The function returns a set of rows, each one with one column of topoelement (which is
just a two-element integer array) type. The first array element is a topological element ID,
and the second is its type (1 - node, 2 - edge, 3 - face). Here we got one row, meaning the
country is built from just one face.

For Norway, with lots of islands, the element list will be much longer:

SELECT topology.GetTopoGeomElements(topogeom) FROM countries WHERE name =
'Norway';
gettopogeomelements

 {2713,3}
 {2714,3}
 {2724,3}
 ...
 {2831,3}
 {2832,3}
(120 rows)

There is also a similar function, topology.GetTopoGeomElementArray, which returns an
array aggregate instead of set of rows.

To visualize the result, retrieving the elements' geometry is necessary. For area features,
geometries can be retrieved as polygons or lines.

PostGIS Topology

[249]

For polygons, the geometry is retrieved using the topology.ST_GetFaceGeometry
function. It accepts two arguments, the topology name and face ID. In order to visualize all
Norway's components as polygons, we will need the following query:

SELECT (topology.GetTopoGeomElements(topogeom))[1] AS face_id,
topology.ST_GetFaceGeometry('my_topology',(topology.GetTopoGeomElements(top
ogeom))[1]) FROM countries WHERE name='Norway';

The border of Norway visualized using topology.ST_GetFaceGeometry

Querying topological elements by a point
PostGIS has functions to identify topological elements at a given spatial location. There are
three functions, each for one element type.

PostGIS Topology

[250]

Locating nodes
First, we'll locate a node with the topology.GetNodeByPoint function. It's really a
wrapper around ST_Intersects or ST_DWithin (when used with a tolerance parameter)
functions.

It takes three arguments. The first is a topology name, the second is a point geometry
(which must have the same SRID as topology), and the third is a tolerance (in the units of
topology's SRID). The tolerance can be set to zero, in which case the point geometry must
precisely match the node location or 0 will be returned.

For example, let's locate the node ID of a Czech-German-Polish tripoint near the town of
Zittau:

SELECT topology.GetNodeByPoint('my_topology','SRID=4326;POINT(14.82337
50.87062)',0.02);
 getnodebypoint

 1598

When we set the tolerance too low, and leave the point geometry with five-digit precision,
the function will return 0 instead:

SELECT topology.GetNodeByPoint('my_topology','SRID=4326;POINT(14.82337
50.87062)',0.002);
 getnodebypoint

 0

However, when the tolerance is set too high, there will be an exception, as this function can
return only one node ID and no sorting by distance is done:

SELECT topology.GetNodeByPoint('my_topology','SRID=4326;POINT(14.82337
50.87062)',1);
ERROR: Two or more nodes found

Locating edges
The next function, GetEdgeByPoint, is designed to find edges. Its use is identical, and also
throws an exception when there is more than one edge within tolerance. When no edge is
found within tolerance, 0 is returned:

SELECT topology.GetEdgeByPoint('my_topology','SRID=4326;POINT(14.99327
50.92510)',0.015);
 getedgebypoint

PostGIS Topology

[251]

 1626

SELECT topology.GetEdgeByPoint('my_topology','SRID=4326;POINT(14.82061
50.87269)',0.02);
ERROR: Two or more edges found

Another way to find edges in a topology is retrieving them by node. This time, more than
one edge ID can be returned. Let's get back to our tripoint and use the
topology.GetNodeEdges function:

SELECT topology.GetNodeEdges('my_topology', 1598);
 getnodeedges

 (1,-3470)
 (2,1626)
 (3,-1601)

This function returns a set of sequences: the edge appearance order (sequence) and the edge
ID (edge).

Note that some IDs are returned as a negative value. This is because of edge direction:

SELECT edge_id, start_node,end_node FROM my_topology.edge_data WHERE
edge_id IN (3470,1626,1601);
 edge_id | start_node | end_node
---------+------------+----------
 1601 | 1574 | 1598
 1626 | 1598 | 3348
 3470 | 3351 | 1598

For edges returned with a negative ID, the node in question is an end node; for nodes
returned with a positive ID, the node is a start node. When the edge is closed (for example,
forming a polygon face) it will be returned twice, with both signs.

This is useful information, but if we want to retrieve the edges' geometry by joining, the
result will have to be wrapped in the abs() function:

SELECT ed.edge_id, ed.geom FROM my_topology.edge_data ed JOIN
topology.GetNodeEdges('my_topology', 1598) ge ON abs(ge.edge) = ed.edge_id;

PostGIS Topology

[252]

Locating faces
For faces, there is a topology.GetFaceByPoint function. Its usage is identical to the node
and edge location functions: given a topology name, point geometry, and a tolerance, it
returns a face ID:

SELECT topology.GetFaceByPoint('my_topology','SRID=4326;POINT(14.99327
50.92510)',0);
 getfacebypoint

 3155

When working with a contiguous boundary dataset, it's wise to set
tolerance to zero, as when a point is close to the edge, more than one face
can be found within tolerance and an error will be thrown.

Topology editing
Editing of a topological dataset is different than doing so with Simple Features, as the data
is relational and spans across multiple tables. In this section, the editing workflow for
PostGIS topology will be discussed.

Adding new elements
First, we will add new features to the topology using two different methods. One approach
is to use the standard ST_ functions. We will start with two isolated nodes. This is done
with the topology.ST_AddIsoNode function. It takes three arguments: the topology name,
the containing face ID (in our case, we will create nodes in empty space, so it will be NULL),
and the point geometry:

SELECT topology.ST_AddIsoNode('my_topology',NULL,'SRID=4326;POINT(-1 1)');
 st_addisonode

 4568

SELECT topology.ST_AddIsoNode('my_topology',NULL,'SRID=4326;POINT(1 1)');
 st_addisonode

 4569

PostGIS Topology

[253]

Note the returned nodes' IDs, as they will be necessary later when adding edges:

Two isolated nodes added to a topology

PostGIS Topology

[254]

Next, it's time to add two edges, the first as isolated, the second creating a new face. The
edge creation functions ST_AddIsoEdge and ST_AddEdgeNewFaces require four
arguments: the topology name, the start node ID, the end node ID, and a LINESTRING
geometry:

SELECT
topology.ST_AddIsoEdge('my_topology',4568,4569,'SRID=4326;LINESTRING(-1 1,
1 1)');
 st_addisoedge

 4766

New isolated edge

PostGIS Topology

[255]

We will close the polygon shape now. As the next edge will be bound to another edge, it
cannot be called isolated, and therefore another function is necessary:

SELECT
topology.ST_AddEdgeNewFaces('my_topology',4569,4568,'SRID=4326;LINESTRING(1
1, 1 -1, -1 -1, -1 1)');
 st_addedgenewfaces

 4767

New closed edge

Now we can verify the newly added elements (and find out the face ID):

select edge_id, start_node, end_node, left_face, right_face
from my_topology.edge_data where edge_id in(4766,4767);
 edge_id | start_node | end_node | left_face | right_face
---------+------------+----------+-----------+------------
 4766 | 4568 | 4569 | 0 | 4258
 4767 | 4569 | 4568 | 0 | 4258
(2 rows)

PostGIS Topology

[256]

The following is the face geometry:

SELECT ST_AsText(ST_GetFaceGeometry('my_topology',4258));
 st_astext

 POLYGON((-1 1,1 1,1 -1,-1 -1,-1 1))

Newly created face

Another option is to use a PostGIS-specific function: TopoGeo_AddPolygon. When using it,
we don't have to think about creating nodes and edges, as they will be created
automatically. The function takes three arguments: the topology name, the polygon
geometry (it has to be valid, and in the same SRID as topology), and a snapping tolerance
when splitting existing edges:

SELECT topology.TopoGeo_AddPolygon('my_topology','SRID=4326;POLYGON((-2 1,
-1.5 1, -1.5 -1, -2 -1, -2 1))',0.002);
 topogeo_addpolygon

 4259

PostGIS Topology

[257]

In this case, a new polygon was added in empty space. One closed edge has been created, as
well as one node connecting its terminals. The newly created face ID was returned:

Newly created nodes and edges after the TopoGeo_AddPolygon function

Creating TopoGeometries
After creating some topological elements, it's time to link them with a feature table. A
function, topology.CreateTopoGeom, is used to instantiate a TopoGeometry. It takes four
arguments:

Topology name
Geometry type: 1 - Point, 2 - Line, 3 - Area, 4 - Collection
TopoGeometry layer ID
Array of TopoElements

PostGIS Topology

[258]

Let's add the first created face as a fictional country, Nulland, to the countries table:

INSERT INTO countries(name,topogeom)
VALUES('Nulland',topology.CreateTopoGeom('my_topology',3,1,'{{4258,3}}'::to
pology.topoelementarray));

A topoelementarray is a special helper type. It's an array of two-dimensional arrays, each
composed of a topology element ID and its type (1-node,2-edge,3-face). The element's types
must match the TopoGeometry type if it's not a collection (type 4); for type 1, only nodes
are allowed; for type 2, only edges; and for type 3, only faces.

The next face we create with TopoGeo_AddPolygon is another fictional country,
Neverland, from the following:

INSERT INTO countries(name,topogeom)
VALUES('Neverland',topology.CreateTopoGeom('my_topology',3,1,'{{4259,3}}'::
topology.topoelementarray));

Splitting and merging features
In a topological data model, splitting and merging features is done by adding and removing
nodes and edges. For example, a polygon will be split when an edge is added, and two lines
are merged when a node between them is removed. In this section, we will learn how to
merge and split features in PostGIS topology.

Splitting features
There are two ways to split a polygon - with SQL/MM standard function and a non-
standard, PostGIS specific function.

Using the standard way, we'll have to add two nodes to existing edges and split them.

This is done with the topology.ST_ModEdgeSplit function. It accepts three arguments:
the topology name, the edge ID, and the point geometry, and returns the integer ID of the
newly created node. A new node is added to the topology, and the edge with a given ID is
split into two parts. One retains the original ID, and the second is given a new ID.

There is also a ST_NewEdgeSplit function, which deletes the original
edge and creates two brand new edges instead. Use it if you are into
immutable data structures.

PostGIS Topology

[259]

We'll split Nulland into East and West Nulland by first splitting the edges with IDs of
4766 and 4767:

SELECT topology.ST_ModEdgeSplit('my_topology',4766,'SRID=4326;POINT(0 1)');
SELECT topology.ST_ModEdgeSplit('my_topology',4767,'SRID=4326;POINT(0
-1)');

The node and edge structure after adding two new nodes

Now, new nodes and edges are ready, but the face remains intact. So, we'll add a new edge,
splitting the face - using the topology.ST_AddEdgeModFace function. It takes four
arguments: the topology name, start node ID, end node ID, and new edge geometry. It
splits a face, one part with the original ID remains in the database, and the second part is
created. The return value is the ID of the newly created edge (the newly created face ID
must be queried later):

SELECT
topology.ST_AddEdgeModFace('my_topology',4574,4575,'SRID=4326;LINESTRING(0
1, 0 -1)');

PostGIS Topology

[260]

Split face after adding a new edge

As with splitting an edge, there's ST_AddEdgeNewFaces, which creates
two new faces instead of modifying existing ones.

PostGIS Topology

[261]

Now the face is split, and Nulland's TopoGeometry updated:

SELECT topology.GetTopoGeomElementArray(topogeom) FROM countries WHERE name
='Nulland';
 gettopogeomelementarray

 {{4258,3},{4262,3}}

Now it's time to update the feature table:

DELETE FROM countries WHERE name='Nulland';
INSERT INTO countries(name,topogeom) VALUES('West
Nulland',topology.CreateTopoGeom('my_topology',3,1,'{{4258,3}}'::topology.t
opoelementarray));
INSERT INTO countries(name,topogeom) VALUES('East
Nulland',topology.CreateTopoGeom('my_topology',3,1,'{{4252,3}}'::topology.t
opoelementarray));

As topology manipulation involves multiple queries, it's wise to use
PostgreSQL's transactional features (BEGIN TRANSACTION at the
beginning and COMMIT at the end). Should any query fail, the transaction
ensures that the database is not left in a half-baked state.

Another way to split a polygon is to use a non-standard
topology.TopoGeo_AddLinestring function. It creates the required nodes automatically,
and can also snap the splitting line to a feature within a specified tolerance.

For example, in order to split Neverland into two pieces using a LineString geometry and
TopoGeo_AddLinestring function, we need to execute a query as follows:

SELECT
topology.TopoGeo_AddLinestring('my_topology','SRID=4326;LINESTRING(-2.0001
0.001, -1.501 0.001)',0.002);

Note that the nodes and edges are added automatically, and the splitting line geometry
doesn't have to be exactly snapped to an existing feature - it will be aligned within a
specified tolerance:

PostGIS Topology

[262]

Split face after adding a LineString to a topology

Merging features
As mentioned before, merging faces is done by deleting an edge, and merging edges is done
with node deletion. Let's assume West and East Nulland have reunited. There are two
standard functions for edge removal: the mutating topology.ST_RemEdgeModFace and
immutable topology.ST_RemEdgeNewFaces.

These functions don't work when any of the faces are members of any TopoGeometry, so
we have to delete them first. For learning purposes, let's delete the whole East Nulland
row and clear a West Nulland's TopoGeometry:

DELETE FROM countries WHERE name='East Nulland';
UPDATE countries SET topogeom = topology.clearTopoGeom(topogeom) WHERE
name='West Nulland';

PostGIS Topology

[263]

Now change the underlying topology:

SELECT topology.ST_RemEdgeModFace('my_topology',4775);

Merged faces after edge removal

The edge with ID 4775 is now removed, and the faces merged. The West
Nulland's TopoGeometry can be recreated:

UPDATE countries SET name = 'Nulland', topogeom =
topology.CreateTopoGeom('my_topology',3,1,'{{4258,3}}'::topology.topoelemen
tarray) WHERE name = 'West Nulland';

PostGIS Topology

[264]

However, the two now-unnecessary nodes, 4574 and 4575, remain. To get rid of them,
we'll use the topology.ST_ModEdgeHeal function. It accepts three arguments: the
topology name, the first edge ID, and the second edge ID. The first edge becomes modified
with merged geometry, and the second one is deleted:

SELECT topology.ST_ModEdgeHeal('my_topology',4774,4767);

The ID of a deleted node (not edge!) is returned:

The edges merged with node removal

The second unnecessary node will be deleted when edges 4774 and 4773 are merged:

SELECT topology.ST_ModEdgeHeal('my_topology',4774,4773);
 st_modedgeheal

 4569

PostGIS Topology

[265]

Updating edge geometry
To modify the shape of a single edge, the topology.ST_ChangeEdgeGeom function is used.
There are three arguments to supply: the topology name, the edge ID, and the new
geometry. For example, we'll modify the border between East and West Neverland: the
edge with an ID of 4778:

SELECT
topology.ST_ChangeEdgeGeom('my_topology',4778,'SRID=4326;LINESTRING(-2
0.00099999999999989, -1.75 0.1, -1.5 0.001)');

A modified edge geometry

PostGIS Topology

[266]

Note that there's no tolerance, and the start and end points must precisely match. It's best to
derive the first and last points for a new geometry from an existing geometry.

This is where PostGIS topology really shines: the geometry is changed once and only once,
and both polygons will be still perfectly adjacent.

Topology-aware simplification
A very useful feature of a topology is the ability to simplify the feature geometry while
maintaining its topological relationships. As we learned in Chapter 2, Spatial Data Analysis,
the ST_SimplifyPreserveTopology function doesn't do that, despite its name. In this
section, we will learn how to simplify features using topology functions.

Importing sample data
The data used as an example is extracted from the Czech hydrological dataset. Its location
was mentioned at the beginning of the chapter, in the The data section. Now we'll import a
DIBAVOD watershed layer into a database using ogr2ogr:

ogr2ogr -t_srs EPSG:32633 -f PostgreSQL "PG:dbname=mastering_postgis
host=localhost user=osm password=osm" -lco GEOMETRY_NAME=geom -lco
PRECISION=no -nln watershed_ord3 A08_Povodi_III.shp

Next, we will convert the Simple Feature geometry to a topology with 2-meter precision:

SELECT topology.CreateTopology('water_topology', 32633, 1, FALSE);
SELECT
topology.AddTopoGeometryColumn('water_topology','public','watershed_ord3','
topogeom','POLYGON');
UPDATE watershed_ord3 SET topogeom =
topology.toTopoGeom(geom,'water_topology',1,2);

PostGIS Topology

[267]

We learned about geometry simplification in Chapter 2, Spatial Data Analysis. Let's try to
use it to simplify watersheds with a 50-meter tolerance:

SELECT ogc_fid, ST_SimplifyPreserveTopology(geom,50) FROM watershed_ord3;

Simplification of a non-topological dataset

This is definitely not hydrologically correct: some areas belong to two watersheds and there
are gaps.

With topology, it is possible to simplify a dataset without sacrificing its topological
integrity. The trick is to use the topology.ST_Simplify function (not
public.ST_Simplify) on a TopoGeometry column:

SELECT ogc_fid, topology.ST_Simplify(topogeom,50) from watershed_ord3;

PostGIS Topology

[268]

Simplification of a topological dataset

As result, geometries are simplified, but nodes are preserved and connectivity is not lost.

Topology output
There are two output functions in PostGIS Topology: topology.ST_AsGML and
topology.ST_AsTopoJSON. GML is an OGC standard, while TopoJSON is a GeoJSON-
like text-based exchange format. It was designed to reduce the size and redundancy of
GeoJSON for datasets composed of neighboring polygons.

GML output
Topological GML can be retrieved from the database using the topology.AsGML function.
The simplest use case is to supply a single argument, the TopoGeometry column:

SELECT topology.AsGML(topogeom) FROM countries WHERE name='Nulland';

<gml:TopoSurface><gml:directedFace><gml:Face
gml:id="F4258"><gml:directedEdge orientation="-"><gml:Edge
gml:id="E4766"><gml:directedNode orientation="-"><gml:Node
gml:id="N4568"/></gml:directedNode><gml:directedNode><gml:Node
gml:id="N4574"/></gml:directedNode><gml:curveProperty><gml:Curve
srsName="urn:ogc:def:crs:EPSG::4326"><gml:segments><gml:LineStringSegment><
gml:posList srsDimension="2">-1 1 0
1</gml:posList></gml:LineStringSegment></gml:segments></gml:Curve></gml:cur

PostGIS Topology

[269]

veProperty></gml:Edge></gml:directedEdge><gml:directedEdge orientation="-
"><gml:Edge gml:id="E4774"><gml:directedNode orientation="-"><gml:Node
gml:id="N4574"/></gml:directedNode><gml:directedNode><gml:Node
gml:id="N4578"/></gml:directedNode><gml:curveProperty><gml:Curve
srsName="urn:ogc:def:crs:EPSG::4326"><gml:segments><gml:LineStringSegment><
gml:posList srsDimension="2">0 1 1 1 1 -1 0 -1 -1 -1 -1
0.001</gml:posList></gml:LineStringSegment></gml:segments></gml:Curve></gml
:curveProperty></gml:Edge></gml:directedEdge><gml:directedEdge
orientation="-"><gml:Edge gml:id="E4779"><gml:directedNode orientation="-
"><gml:Node gml:id="N4578"/></gml:directedNode><gml:directedNode><gml:Node
gml:id="N4568"/></gml:directedNode><gml:curveProperty><gml:Curve
srsName="urn:ogc:def:crs:EPSG::4326"><gml:segments><gml:LineStringSegment><
gml:posList srsDimension="2">-1 0.001 -1
1</gml:posList></gml:LineStringSegment></gml:segments></gml:Curve></gml:cur
veProperty></gml:Edge></gml:directedEdge></gml:Face></gml:directedFace></gm
l:TopoSurface>

This will output a GML with a gml namespace. The second optional argument can be given,
and PostGIS will output XML elements in a custom namespace, such as topogml:

SELECT topology.AsGML(topogeom,'topogml') FROM countries WHERE
name='Nulland';

<topogml:TopoSurface><topogml:directedFace><topogml:Face
topogml:id="F4258">...

Alternatively, we can create a GML document without namespaces, in which case we'll
supply an empty string as the second argument:

SELECT topology.AsGML(topogeom,'') FROM countries WHERE name='Nulland';

<TopoSurface><directedFace><Face id="F4258"><directedEdge orientation="-
"><Edge id="E4766">...

TopoJSON output
TopoJSON is another topological format, designed with web mapping in mind. It is
supported directly by the D3 and OpenLayers (starting with version 3) frameworks, and
can be converted to GeoJSON with a TopoJSON library for use with other tools.

One difficulty with this format is that the edges (called arcs in TopoJSON parlance) are
defined by index, while in PostGIS topology they are defined by IDs. To overcome this, an
intermediate table called edgemap has to be created:

CREATE TABLE edgemap(arc_id serial, edge_id int unique);

PostGIS Topology

[270]

This table can be temporary, so PostgreSQL will automatically drop it at
the end of a session.

Now the function is ready to be used. It accepts two arguments: the TopoGeometry column
and the name of the intermediate table:

SELECT topology.astopojson(topogeom,'edgemap') FROM countries WHERE
name='Nulland';

 astopojson
--
 { "type": "MultiPolygon", "arcs": [[[2,1,0]]]}

The intermediate table will have its rows populated with arc indexes and edge IDs:

SELECT * FROM edgemap;
 arc_id | edge_id
--------+---------
 1 | 4774
 2 | 4766
 3 | 4779

Now the TopoJSON document can be composed using the fragments generated by the
topology.AsTopoJSON function and edge geometries. An example, using SQL functions
only (no processing in the application layer) was shown in Chapter 7, PostGIS - Creating
Simple WebGIS Applications.

Summary
PostGIS can store and analyze vector data not only in the Simple Feature model, but also in
a topological model. This model is a good fit for data such as networks and boundaries,
where connectivity and topological consistency are important. The toolset available is not as
rich as Simple Feature's toolset, but all common processing tasks, such as creating, editing,
merging, and splitting, can be accomplished with available functions. A very useful feature
is the ability to simplify features while maintaining the topological integrity. Also, just by
importing data into topology, some minor inconsistencies, such as unconnected lines, can
be automatically fixed.

9
pgRouting

pgRouting is a PostGIS extension that brings routing tools to the table. pgRouting offers an
extensive set of algorithms to choose from, can solve traveling salesman problems, calculate
drive time zones, and even obey turn restrictions and avoid one-way streets.

With such a toolbox, one can create some pretty serious routing services that can be
consumed, for example, by web applications.

In this chapter, we will focus on:

Installing the pgRouting extension
Importing routing data:

Importing shapefiles
Importing OSM data using osm2pgrouting

Routing algorithms:
All pairs shortest path
Shortest path
Driving distance
Traveling sales person

Our final example will be a simple web application that calculates shortest routes in the city
of Vienna.

pgRouting

[272]

Installing the pgRouting extension
Many distributions of PostGIS are equipped with pgRouting already, so there is a chance
you have it installed without even knowing. Execute the following SQL to check whether
you have pgRouting onboard:

select pgr_version();

If you do not get an error, but info on the pgRouting version, then you're good to go.

If you happen to not have the extension available, you need to obtain it first. To do so,
navigate to http://pgrouting.org/download.html and follow the instructions for your OS.
Once you have the binaries set up, enable the extension by executing the following:

CREATE EXTENSION pgrouting;

At this stage, we should be ready to continue our journey with pgRouting.

Importing routing data
In order to perform some routing analysis, we need the data first. You may obtain the data
from different sources, we will use two of them - OSM data delivered in SHP format and
OpenStreetMap data.

We will store the data in a new schema - pgr.

pgr is a prefix used by the pgRouting functions, so our schema fits
perfectly in the naming convention.

Importing shapefiles
In this example, we will use an example of a routable shapefile downloaded from
GeoFabrik.de - https://www.geofabrik.de/data/shapefiles_routable_vienna.zip. A
routable shapefile, as GeoFabrik describes it, is a standard shapefile that contains OSM data
preprocessed with routing in mind. This means it contains only road data with lines split at
intersections, with some speed limits information, road line lengths, and so on.

http://pgrouting.org/download.html
https://www.geofabrik.de/data/shapefiles_routable_vienna.zip

pgRouting

[273]

We have already addressed importing shapefiles to PostGIS, so you can use a tool of your
choice; in this case, I am using osm2pgsql:

shp2pgsql -s 4326 roads pgr.shp_roads | psql -h localhost -p 5434 -U
postgres -d mastering_postgis

Once our vector makes it to the database, we need to do some further processing before it is
possible to issue pgRouting-specific queries against the dataset.

pgRouting requires the network edges (road lines) to be LineStrings. You may have noticed
that shp2pgsql imported our lines as MultiLineStrings, but let's verify this:

select distinct st_GeometryType(geom) from pgr.shp_roads;

The result should be ST MulitLineString and we have to fix that.

shp2pgsql does offer a -S param to create simple geometries instead of the
default multi geometries. Unfortunately, our dataset of choice does
contain multi geoms so we have to approach it differently.

In order to turn the MultiLineStrings into LineStrings (and split them when required) a
ST_Dump function will come in handy. Basically, it extracts the geometry paths off a
MultiGeometry:

select
 gid, osm_id, code, fclass, name, ref, oneway, maxspeed, layer, ete,
speed, length, bridge, tunnel,
 (ST_Dump(geom)).geom as geom
into pgr.shp_roads_fixed
from
 pgr.shp_roads;

Let's verify our fixed data - this time, the expected output is ST LineString:

select distinct st_GeometryType(geom) from pgr.shp_roads_fixed;

pgRouting works with its own specific flavor of topology, so we need to create pgRouting
topology for our data. We will use a pgr_CreateTopology function to prepare the data. It
requires two extra columns in the roads dataset, both integers - one for the start point
identifier and the other one for the endpoint identifier; their default names are source and
target, respectively. Let's modify our roads data model to cater for the requirements:

ALTER TABLE pgr.shp_roads_fixed ADD COLUMN source integer;
ALTER TABLE pgr.shp_roads_fixed ADD COLUMN target integer;

pgRouting

[274]

At this stage, we should be able to create the pgRouting topology. So, let's do just that:

select pgr_createTopology(
 'pgr.shp_roads_fixed', --edge_table; network table name
 0.000001, --tolerance; snapping tolerance with disconnected edges
 'geom', --name of the geometry column in the network table
 'gid', --name of the identifier column in the network table
 'source', --name of the source identifier column in the network table
 'target' --name of the target identifier column in the network table
 --rows_where: condition to select a subset of records; defaults to true
to process all the rows where the source / target are nulls; otherwise the
subset of rows is processed
 --clean: boolean - clean any previous topology; defaults to false
);

In the preceding code, I included the explanation of each parameter. Basically, this code
creates pgRouting topology for our roads dataset. The roads table gets modified - source
and target columns are filled with new data; indexes are created for ID, geom, source, and
target columns.

If the topology has been created, you should see an OK result; FAIL otherwise. If the
operation failed and you happen to use pgAdmin to run queries, review the Messages tab
for details on what the reason for the failure.

You should notice that a new table has been created: shp_roads_fixed_vertices_pgr.

We can now verify the graph by using the pgr_analyzeGraph function:

select pgr_analyzeGraph('pgr.shp_roads_fixed', 0.00001, 'geom', 'gid');

It will also show either OK or FAIL, but when you look at the notifications (if you run the
command via psql, you will see the output in the CMD; in pgAdmin you will need to
switch to the Messages tab) you should see a similar output:

NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 59
NOTICE: Dead ends: 7534
NOTICE: Potential gaps found near dead ends: 17
NOTICE: Intersections detected: 1064
NOTICE: Ring geometries: 220
 pgr_analyzegraph

pgRouting

[275]

 OK
(1 row)

Dead ends and potential gap problems are also identified in the vertices table in the cnt
and chk columns:

select
 (select count(*) FROM pgr.shp_roads_fixed_vertices_pgr WHERE cnt = 1) as
deadends,
 (select count(*) FROM pgr.shp_roads_fixed_vertices_pgr WHERE chk = 1) as
gaps

Importing OSM data using osm2pgrouting
If you happen to prefer OpenStreetMap data for your routing solutions, you can use the
osm2pgrouting utility to import network data directly from the OSM format.

As mentioned earlier, pgRouting may have been bundled with your PostGIS installation. In
such cases, osm2pgrouting should already be installed - see if the utility is available in the
PgSQL's bin, or simply type osm2pgrouting in the console.

If you see help for the tool, you're good to go; otherwise, you will have to install it.

osm2pgrouting gets much more love from Unix users (obviously), so if you happen to be
one of a kind, in order to get the utility, follow the instructions from here:
https://github.com/pgRouting/osm2pgrouting/tree/osm2pgrouting-2.1.0.

Windows versions of osm2pgrouting are available under the Unreleased PostGIS Versions
section of the PostGIS download website (http://postgis.net/windows_downloads/) - do
make sure you download the version appropriate for your setup - make sure the database
version and PostGIS version match. Once downloaded, follow the instructions in the
readme.

For this example, we will use data for Vienna from MapZen's metro extracts:
https://s3.amazonaws.com/metro-extracts.mapzen.com/vienna_austria.osm.bz2. This
is the Raw OpenStreetMap dataset in XML format.

https://github.com/pgRouting/osm2pgrouting/tree/osm2pgrouting-2.1.0
http://postgis.net/windows_downloads/
https://s3.amazonaws.com/metro-extracts.mapzen.com/vienna_austria.osm.bz2

pgRouting

[276]

Once downloaded and extracted, we can import it:

osm2pgrouting --conf <mapconfig.xml path> --file vienna_austria.osm --
schema pgr --clean 1 --host localhost --db_port 5434 --user postgres --
passwd postgres --dbname mastering_postgis

If you are on a Linux box, you can omit the -conf parameter; the tool will
use the default mapconfig.xml. On a Windows box, you need to provide
the path to the PgSQL's bin, or execute the tool from this directory.

When you review the pgr schema, you will notice that there are a few more tables now - a
couple of OSM dictionaries and ways and ways_vertices_pgr tables.

The data model of the ways table differs from the model imported from SHP. It is worth
knowing the meaning of some of the data:

length: Length of an edge in degrees
length_m: Length of an edge in metres
cost/reverse_cost: Length of an edge in degrees; negative value is for the
wrong way
cost_s/reverse_cost_s: Time in seconds calculated for the max speed for an
edge

pgRouting algorithms
pgRouting is equipped with quite a few algorithms specialized in different aspects of
routing. Although all are routing algorithms, for the sake of convenience, let's split them
into the following artificial functional groups:

All pairs shortest path
Shortest Path
Driving distance
Traveling Sales Person

pgRouting

[277]

All pairs shortest path
All pairs shortest path algorithms are good for calculating the total costs of the shortest path
for each node in the graph. There are two of those available in pgRouting:

All pairs shortest path, Johnson's algorithm: Good for calculating costs over
sparse graphs
All pairs shortest path, Floyd-Warshall algorithm: Good for calculating costs
over dense graphs

Let's give it a shot:

select * from pgr_floydWarshall('select gid as id, the_geom, source::int4,
target::int4, cost::float from pgr.ways where ST_Intersects(the_geom,
ST_MakeEnvelope(16.3618,48.2035,16.3763,48.2112,4326))', false);

This query picks roughly a thousand of the edges of Vienna city center from our OSM ways
table and outputs something like this (the documentation mentions that the recommended
usage is running the method on up to 3500 rows, as otherwise the performance will drop
drastically):

 start_vid| end_vid| agg_cost
-----------+---------+---------------------
 58529| 68104| 0.000602242417967414
 58529| 47346| 0.00909508063542836
 58529| 48852| 0.00986963261560741
 58529| 39868| 0.00571458698714135
 58529| 40505| 0.00620416841040188
...

All pairs algorithms do not return a path; what you get is a list of total costs of the shortest
paths between each node of the graph. The first row reports cost 0, as the start (id1) and end
(id2) nodes are the same. Next goes the list of costs for the shortest routes to the other
nodes, starting from the node in the id1 column.

Our query returns over a million combinations, so it may take a while to compute.

In version 2.2, the algorithms mentioned in this section were redesigned to
improve performance; method names and their signatures, as well as the
output, changed a bit. If you use pgr older than 2.2, you should look for
the pgr_apspwarshall function instead.

pgRouting

[278]

Shortest path
Shortest path algorithms are tasked with calculating the shortest path between specified
points. pgRouting offers the following to choose from:

Shortest path Dijkstra
Bi-directional Dijkstra shortest path
Shortest path A*
Bi-directional A* shortest path
K-shortest path, multiple alternative paths
K-Dijkstra, One-to-Many Shortest Path
Turn restrictions shortest path (TRSP)

Shortest path does not necessarily mean shortest in terms of length. If a network has some
other characteristics assigned, for example, time needed to travel an edge, or the cost of
travel, the output can be considered the quickest or cheapest respectively. The meaning of
the 'cost' provided to the shortest path algorithms can therefore be adjusted to suit even
sophisticated needs and calculate routes with the lowest denivelation, for example.

The output of the algorithms is not geometry as one could expect, but rather a dataset that
describes the sequence of nodes and edges, along with the cost of traveling through an edge
and the cumulative cost of a route. We'll see some examples a bit later.

You may have noticed that both Dijskatra and A* algorithms have bi-directional variants. In
such cases, the path is being calculated simultaneously from both ends (source and target)
and stopped in between whenever the paths meet. This is meant to improve performance.

Shortest path Dijkstra
The algorithm was invented in 1956 by Edsger W. Dijkstra, a computer scientist tasked to
demonstrate the capabilities of the ARMAC computer while working at the Mathematical
Center in Amsterdam.

pgRouting

[279]

Shortest path Dijkstra was the first algorithm implemented in pgRouting; pgRouting was
called pgDijkstra in its early days.

The algorithm can be used by calling a pgr_dijkstra function. It has a few different
signatures that let one calculate paths in the following modes:

One-to-one: One source node to one target node
One-to-many: One source node to many target nodes
Many-to-one: Many source nodes to one target node
Many-to-many: Many source nodes to many targets

All the methods can be used for either directed or non-directed networks.

The simplest usage of the algorithm looks like this:

select * from pgr_dijkstra('select gid as id, source, target, length_m as
cost from pgr.ways', 79240, 9064);

This uses the minimal signature of pgr_dijkstra and calculates the route from point A (in
our case, Schottenfeldgasse) to point B (in our case, Beatrixgasse) and assumes a directed
graph. The query results in 228 rows and the result looks as follows:

 seq| path_seq| node| edge| cost| agg_cost
-----+----------+-------+-------+-----------------+-----------------
 1| 1| 79240| 69362| 169.494690094003| 0
 2| 2| 52082| 44175| 107.754808368861| 169.494690094003
...

In order to obtain the actual geometry, we should modify the query a bit:

select
 ways.the_geom
from (
 select * from pgr_dijkstra('select gid as id, source, target, length_m
as cost from pgr.ways', 79240, 9064)) as route
 left outer join pgr.ways ways on ways.gid = route.edge;

pgRouting

[280]

When visualized, our result looks as follows:

The output of the algorithm in the many mode is a bit different; the returned result set adds
two extra columns (depending on the scenario) - start_vid and end_vid to specify the
starting and/or the ending node, respectively. Let's use our previously used locations to
search for the shortest path to Vienna's Central Train station:

select * from pgr_dijkstra('select gid as id, source, target, length_m as
cost from pgr.ways', ARRAY[79240, 9064], 120829);

pgRouting

[281]

The results are very similar, but you will notice the presence of a start_vid column,
described earlier:

 seq|path_seq|start_vid| node| edge| cost| agg_cost
-----+--------+---------+-------+-------+-----------+---------------
 1| 1| 9064| 9064| 209769|93.17915259|0
 2| 2| 9064| 15615| 133330|82.53885472|93.179152510029
...

This time, our routes are as follows (the route between both points is also shown on the
screenshot):

pgRouting

[282]

An excellent illustration of how the Dijkstra algorithm works can be found
on Wikipedia at:
https://en.wikipedia.org/wiki/File:Dijkstras_progress_animation.

gif.

If you happen to only need the cost of the shortest path and you do not need the
information about the vertices and edges per se, you can use the pgr_dijsktraCost
function. It has the same signatures as the regular pgr_dijkstra, but returns simplified
results:

select * from pgr_dijkstraCost('select gid as id, source, target, length_m
as cost from pgr.ways', 79240, 9064);
 start_vid| end_vid| agg_cost
-----------+---------+------------------
 79240| 9064| 5652.40083087719

And for a variation searching from two source nodes:

select * from pgr_dijkstraCost('select gid as id, source, target, length_m
as cost from pgr.ways', ARRAY[79240, 9064], 120829);
 start_vid| end_vid| agg_cost
-----------+---------+------------------
 9064| 120829| 2860.06209537015
 79240| 120829| 4532.12388804859

A-Star (A*)
The algorithm was invented in 1968 by Nils Nilsson, Bertram Raphael, and Peter E. Hart
during their work on improving path planning of Shakey the robot - a general purpose
robot developed at the Artificial Intelligence Center of the Stanford Research Institute.

A* is similar to the Dijkstra algorithm in that it searches among all the possible paths. The
improvement is that it uses heuristics to first consider the paths that seem to lead to the
target quicker.

The basic usage is as follows:

select * from pgr_aStar('select gid as id, source, target, cost, x1, y1,
x2, y2 from pgr.ways', 79240, 9064);

This time, we need to provide a bit more data to the algorithm; not only the edge ID, source
vertex, target vertex, and cost, but also coordinates of the source and target vertices needed
for the heuristic magic to happen.

https://en.wikipedia.org/wiki/File:Dijkstras_progress_animation.gif
https://en.wikipedia.org/wiki/File:Dijkstras_progress_animation.gif

pgRouting

[283]

When heuristics is not used, the A* algorithm behaves the same way as
Dijkstra.

The output is exactly what we saw when using one-to-one Dijkstra:

 seq| path_seq| node| edge| cost| agg_cost
-----+----------+-------+-------+-----------------+-----------------
 1| 1| 79240| 69362| 169.494690094003| 0
 2| 2| 52082| 44175| 107.754808368861| 169.494690094003
...

And the found route is also exactly the same:

pgRouting

[284]

We searched for the shortest path between the same vertices, so we can draw some
assumptions by now. Basically, A* is quicker than Dijsktra, but the difference depends on
the data and the dataset size. On my box, calculating Dijsktra for our test points takes
roughly 470 ms, while A* takes 450 ms.

This is by no means a trustworthy benchmark of course, but it gives a general impression of
what to expect.

It is also worth remembering that, since A* star is a best-fit algorithm, it tries to predict what
vertices to evaluate in order to find the shortest path; it may not return the most optimal
result. At the same time, Dijkstra evaluates more data and guarantees the results to be
optimal.

Some good illustrations of how A* works can be found on Wikipedia at h t

t p s ://e n . w i k i p e d i a . o r g /w i k i /A *_ s e a r c h _ a l g o r i t h m .

K-Dijkstra
This algorithm is designed to calculate paths from one source to multiple targets and it is
represented by two functions: pgr_kdijkstraPath and pgr_kdijkstraCost.

As of pgRouting 2.2, K-Dijsktra is deprecated and its functionality is provided by the
pgr_dijkstra set of functions. Since we have already seen this in action (although in a
reverse mode - many sources to one target), there is no sense in repeating this again.

K-Shortest path
This algorithm is designed to return multiple alternative paths, so it not only finds the
shortest path, but also K-1 alternative paths. pgRouting implementation is based on Jin J.
Yen's works.

The basic usage is as follows:

select * from pgr_ksp('select gid as id, source, target, cost, x1, y1, x2,
y2 from pgr.ways', 79240, 9064, 2);

https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm

pgRouting

[285]

The output is very similar to what we have seen so far; the difference is the presence of an
additional column that indicates the path identifier:

seq|path_id|path_seq| node| edge| cost| agg_cost
---+-------+--------+-----+-----+-----------------+-----------------
 1| 1| 1|79240|69362| 0.00152459527744| 0
 2| 1| 2|52082|44175|0.000969276126804|0.001524595277445
...

When we visualize the preceding output, it looks as follows:

pgRouting

[286]

Turn restrictions shortest path (TRSP)
Turn restrictions shortest path is an algorithm that can make use of turn restrictions, so it
possible to model real-world scenarios. In terms of performance, it should be close to A*.

For this example, we will focus on a smaller area to demonstrate how to define and use turn
restrictions that should be fed to the pgr_trsp function.

Let's first calculate a route from vertex 26306 to vertex 98111:

select * from pgr_trsp('select gid::int4 as id, source::int4, target::int4,
length_m::float8 as cost from pgr.ways', 26306, 98111, false, false);

Our output is as follows:

 Seq| id1| id2| cost
----+------+-------+--------------------
 0| 26306| 41122| 0.00282144411605047
 1| 51491| 132340|0.000500071364908483
 2| 73162| 132341| 0.00714439682618376
 3| 26893| 157023| 0.00634007469987476
 4| 98111| -1| 0

This is pretty much the same as what we have seen so far. The meanings of the columns are:
sequence, vertex ID to start from, edge ID to follow, and cost of traveling from node (id1)
using edge (id2).

Now let's create the turn restriction table, as described in the documentation:

CREATE TABLE pgr.restrictions (
 id serial,
 to_cost double precision,
 target_id integer,
 via_path text
);

And define some restrictions:

INSERT INTO pgr.restrictions (to_cost,target_id,via_path) VALUES (10000,
157023, '132341');

pgRouting

[287]

The preceding code means that if you are traveling along edge 132341, then the cost of
traveling via edge 157023 is going to be 10000.

Let's see if our restriction works:

select * from pgr_trsp('select gid::int4 as id, source::int4, target::int4,
cost::float8 as cost from pgr.ways', 26306, 98111, false, false, 'select
to_cost, target_id, via_path from pgr.restrictions');

And it looks like it does; the sequence of edges to travel has changed:

 Seq| id1| id2| cost
----+------+-------+--------------------
 0| 26306| 41122| 0.00282144411605047
 1| 51491| 132340|0.000500071364908484
 2| 73162| 91344| 0.00321165171991199
 3| 39894| 136118| 0.00652205259101692
 4| 2717| 66313| 0.00394702020516963
 5| 26893| 157023| 0.00634007469987476
 6| 98111| -1| 0

It is possible to define more than one edge as the access path:

INSERT INTO pgr.restrictions VALUES (2, 10000, 157023, '66313,136118');

This time, what the restriction says is: if you are traveling via edges 136118 - 66313, then
the cost of continuing onto 157023 is 10000.

Notice the route chain that defines the access path to the restricted edge
comes in reverse order.

Once again, the order of the edges to travel has changed. For a change, instead of showing
the tabular data again, let's see how our routes look on a map:

Orange route is the route without the turn restrictions; it does indeed look like
the shortest path
Yellow route was calculated with the first restriction: if coming from 132341,
then the penalty of traveling onto 157023 was 10000

pgRouting

[288]

Green route was calculated with two restrictions - the first one and another one
says that traveling onto 157023 from 136118 - 66313 would incur a penalty of
10000

Driving distance
Driving distance functions use the Dijkstra algorithm to find all the edges that have the
cumulative costs less or equal to the specified value. Our ways dataset has some properties
that can be used to perform sensible driving distance analysis.

Let's first find the edges that are no farther than 1000 metres from Vienna's central train
station:

select * from pgr_drivingDistance('select gid as id, source, target,
length_m as cost from pgr.ways', 120829, 1000);

pgRouting

[289]

Next, let's see how far we can get from the station in five minutes:

select * from pgr_drivingDistance('select gid as id, source, target, cost_s
as cost from pgr.ways', 120829, 300);

In both cases, the output is a dataset with the following columns: seq, node, edge, cost,
and agg_cost. Query results visualized on a map look as follows (orange is the result of
the first query and blue shows the results of the second one):

pgRouting

[290]

Pgr_drivingDistance can also accept multiple starting nodes, so it is possible to calculate
more complex scenarios in one go. In such cases, start vertices are provided as an array, and
the output gets one more column - from_v - that describes what the starting point for the
data was.

Now, as we have calculated the driving distance along our network, let's create driving
distance zones (also called drive time zones, catchment areas) for our five minute drive, so
we can assess what area actually belongs to a certain driving distance. In order to do so, we
will use a pgr_alphaShape function:

select pgr_alphaShape(
 'select
 v.id::int4, v.lon::float8 as x, v.lat::float8 as y
 from(
 select * from pgr_drivingDistance(''select gid as id, source,
target, cost_s as cost from pgr.ways'', 120829, 300)
) as dd
 left outer join pgr.ways_vertices_pgr v on dd.node = v.id'
);

The returned data is not a polygon as one could expect, but a set of
pgr_alphashaperesult; so, basically, points that make up a shape:

 pgr_alphashape

(16.4133473,48.1908108)
(16.4131929,48.1906814)
...
(,) <-ring separator
...

If the function outputs more than one outer/inner ring, then they are separated by a row
with null values for both x and y.

Next, let's make a polygon out of the calculated points:

select pgr_pointsAsPolygon(
 'select
 v.id::int4, v.lon::float8 as x, v.lat::float8 as y
 from(
 select * from pgr_drivingDistance(''''select gid as id,
source, target, cost_s as cost from pgr.ways'''', 120829, 300)
) as dd
 left outer join pgr.ways_vertices_pgr v on dd.node = v.id'
);

pgRouting

[291]

Because pgr_pointsAsPolygon accepts text as the vertices select query
and passes it internally to pgr_alphaShape, it may sometimes be difficult
to work out how to escape apostrophes properly. In such cases, it is worth
having a look at the PostgreSQL's double dollar sign delimiter: $$. In our
example, it would be enough to replace the inner apostrophes with $$. If
you happen to have more levels of string nesting, you add an identifier
between the dollar symbols: $lvl1$ some string $lvl2$ some
nested quoted string $lvl2$ some text $lvl1$

Finally, our result is a MultiPolygon:

pgRouting

[292]

Traveling sales person
The last pgRouting algorithm that we are about to have a look at is the traveling sales
person algorithm. Its purpose is to answer the following question: Given a list of cities and
the distances between each pair of cities, what is the shortest possible route that visits each
city exactly once and returns to the origin city?

pgRouting offers two variants of a TSP function:

pgr_eucledianTSP: Takes a set of points and calculates a point order from the
internally calculated cost matrix based on the Euclidean distances calculated from
point coordinates expressed as Lon/Lat
pgr_TSP: Takes an already calculated distance matrix

Let's calculate the points order for a couple of locations from our Vienna dataset:

select * from pgr_eucledianTSP(
 'select id, lon::float8 as x, lat::float8 as y from
pgr.ways_vertices_pgr where id in
(4540,57407,116126,58791,44800,85852,52421,148735)'
);

The output is as follows:

 seq| node| cost| agg_cost
-----+------+-------------------+------------------
 1| 4540| 0.0272292439764646| 0
 2|148735| 0.0149659383701813|0.0272292439764646
 3| 57407|0.00798812567815924|0.0421951823466459
 4|116126| 0.0406742028363178|0.0501833080248051
 5| 85852| 0.0422062138944045| 0.090857510861123
 6| 58791| 0.0105530643293782| 0.133063724755527
 7| 44800| 0.0181016168186681| 0.143616789084906
 8| 52421| 0.0106700309212339| 0.161718405903574
 9| 4540| 0| 0.172388436824808

pgRouting

[293]

The preceding output on a map looks as follows:

pgRouting 2.2 documentation mentions that using Dijkstra to pre-calculate aggregate costs
of the shortest paths between a set of points prior to feeding the data to TSP is not worthy,
as solving TSP on a Euclidean plane first and then finding shortest paths in an ordered set
of points should give results that are fairly optimal already.

pgRouting

[294]

pgRouting 2.3, on the other hand, brings a pgr_dijkstraCostMatrix function, so one
should expect that providing data with the distance matrix calculated with real distances is
sensible enough to use it. Let's do just that:

select * from pgr_TSP(
 $$
 SELECT * FROM pgr_dijkstraCostMatrix(
 'SELECT gid as id, source, target, cost, reverse_cost FROM
pgr.ways',
 (select array_agg(id) from pgr.ways_vertices_pgr where id in
(4540,57407,116126,58791,44800,85852,52421,148735)), directed := false)
 $$,
 start_id := 4540, --if not specified, first in arr would be used
 randomize := false
);

Calculating distance matrix with directed networks will likely result in the
output matrix being non-symmetric - the cost of traveling from A to B is
not the same as the cost of traveling from B to A (cost/reverse cost). This
will make the TSP function fail with the following message:
ERROR: A Non symmetric Matrix was given as input

The output is actually the same, although in reversed order:

 seq| node| cost| agg_cost
-----+------+-------------------+------------------
 1| 4540| 0.0156343305442904| 0
 2| 52421| 0.0255674722245925|0.0156343305442904
 3| 44800| 0.0133600823412494|0.0412018027688828
 4| 58791| 0.0458230476499673|0.0545618851101322
 5| 85852| 0.0475591325608726| 0.1003849327601
 6|116126| 0.0186155727831978| 0.147944065320972
 7| 57407| 0.0272063328584911| 0.16655963810417
 8|148735| 0.0297395689283764| 0.193765970962661
 9| 4540| 0| 0.223505539891037

Starting with pgRouting 2.3, there are quite a few extra optional
parameters that can tweak the way TSP is solved. It is worth doing some
further reading on the algorithm implementation though, to fully
understand the impact they have on the calculation process.

pgRouting

[295]

Handling one-way edges
All the routing algorithms that we have seen have an option to specify whether a graph is
directed or non-directed. An edge of non-directed graphs can be travelled from source to
target and from target to source with the same cost. When the cost of traveling in both
directions is different, or an edge is not traversable in one of the directions, then a network
is directed.

In pgRouting, cost and reverse cost is used for defining the rules of traveling in both
directions (source to target and target to source). So, whenever telling the algorithms to
assume a directed network is used, the reverse cost should be provided.

Basically, the rules are as follows:

Cost applies to edge traversal from source node to target node or, when a
network is not directed, also from the target node to source node
Reverse cost applies to edge traversal from target to source and will only be used
when assuming a directed network
To discourage the algorithm to use an edge in a given direction, cost should be
set to a higher value
To remove an edge in a given direction from a graph completely, a cost should be
set to a negative value

For example:

 id| source| target| cost| reverse_cost
----+-------+-------+-----+-------------
 1| 1| 2| 0.1| 0.1
 2| 1| 3| 0.1| 10000
 3| 2| 3| -1| 0.1
 4| 2| 4| 0.1| -1

Edge 1 is traversable in both directions
Edge 2 is also traversable in both directions, but the cost is high enough. So, if an
edge has been used, it would mean there was no other way to get to the target;
normally, algorithms would avoid traversing such edges
Edge 3 is only traversable from target to source node (3 -> 2); edge connecting
nodes 2 -> 3 is not considered a part of the graph
Edge 4 is traversable only from source to target, but not the other way round;
edge connecting nodes 4 -> 2 is not considered a part of the graph

pgRouting

[296]

Consuming pgRouting functionality in a web
app
A final example of our pgRouting journey is a web application that consumes some of the
functionality we have seen so far.

In order to preview the example, navigate to the example's folder - apps/pgrouting, run
sencha app watch, and navigate to http://localhost:1841/apps/pgrouting/. You
should see a similar output (you will have to calculate a route and drive time zone first
though):

pgRouting

[297]

In order to feed our web app, we need to prepare a web service first. We have gone through
creating a nice REST-like API for our WebGIS examples in the previous chapter, so this time
all the maintenance stuff is going to be omitted.

At this stage, I assume our barebones web server is up and running, so we just need to plug
in some functionality.

In order to perform any routing related logic, we should have the IDs of the vertices we
would like to use in our analysis. Let's start with a function that snaps the clicked Lon/Lat to
the nearest vertex in our network:

router.route('/snaptonetwork').get((req, res) => {

 //init client with the appropriate conn details
 let client = new pg.Client(dbCredentials);

 client.connect((err) => {
 if(err){
 sendErrorResponse(res, 'Error connecting to the database: ' +
err.message);
 return;
 }

 let query =
`SELECT
 id, lon, lat
FROM
 pgr.ways_vertices_pgr
ORDER BY
 ST_Distance(
 ST_GeomFromText('POINT(' || $1 || ' ' || $2 ||')',4326),
 the_geom
)
LIMIT 1;`;

 //once connected we can now interact with a db
 client.query(query, [req.query.lon, req.query.lat], (err, result)
=>{

 //close the connection when done
 client.end();

 if(err){
 sendErrorResponse(res, 'Error snapping node: ' +
err.message);
 return;
 }

pgRouting

[298]

 res.statusCode = 200;

 res.json({
 query: query,
 node: result.rows[0]
 });
 });
 });
});

The preceding method takes in a pair of coordinates expressing latitude and longitude and
snaps them to the nearest vertex found in the network. It returns the ID of the node with its
coordinates, as well as the query executed, so it is possible to see how our database is
queried.

This API is used every time a map is clicked, in order to provide an input point for further
processing.

In the map client, one can use buttons with green and red pins to define start and end route
points, respectively. Once this is done, a button with the map directions sign symbol
triggers another API method call - the one that calculates the route. It takes in the IDs of
nodes to calculate the shortest path between them:

let query =
`select
 ST_AsText(
 ST_LineMerge(
 ST_Union(ways.the_geom)
)
) as wkt
from
 (
 select
 *
 from
 pgr_dijkstra(
 'select gid as id, source, target, length_m as cost from
pgr.ways',
 $1::int4, $2::int4
)
) as route
 left outer join pgr.ways ways on ways.gid = route.edge;`;

pgRouting

[299]

Since most of our API methods body is pretty much the same, only the
actual SQL executed is presented.

We have seen a similar query already, when explaining how to get from a list of coordinates
and edges output by the Dijkstra algorithm to the actual geometries representing the edges.

The preceding version does a few more operations - it unions the separate LineString edges
into a MultiLineString geometry, then joins the MultiLineString into a single LineString to
finally encode it as a WKT geometry, so our client app can handle it.

Because we use the minimal signature of the Dijkstra algorithm, it assumes the graph is
directed, and this can be seen when our start point snaps to the edge of a dual carriage way
and the general direction of a route is backwards:

pgRouting

[300]

We have a final method to implement in our pgRouting API - we need to calculate drive
time zones. In this scenario, we take in a node ID and the driving time in seconds and
output a polygon representing an alpha shape:

let query =
`select ST_AsText(
 pgr_pointsAsPolygon(
 'select
 v.id::int4, v.lon::float8 as x, v.lat::float8 as y
 from(
 select * from pgr_drivingDistance(''''select gid as id, source,
target, cost_s as cost from pgr.ways'''', ' || $1 || ',' || $2 || ')
) as dd
 left outer join pgr.ways_vertices_pgr v on dd.node = v.id'
)
) as wkt;`;

Once again, we have seen a similar query already; the difference is encoding the geometry
as wkt.

The client side is rather simple and is pretty much about declaring the UI with some basic
interactions, a map with the OSM base layer, and two vector layers with some customized
styling. API calls use standard AJAX requests and then, on success, the executed query is
displayed in the right-hand side panel and, also, the returned WKT is parsed and displayed
on the map. Nothing fancy really.

It is worth noticing though, that the map projection in this example is EPSG:3857 and the
network data is in EPSG:4326. So the geometries need to be re-projected before being sent
out to the API and, when the WKT geometry is retrieved, it needs to be displayed on a map.

The full source code of this example can be found in this chapter's resources, so you may
study it in detail as needed.

pgRouting

[301]

Summary
Routing algorithms may be used with some more imagination that the actual road related
routing - it is just a matter of defining a specific meaning of a cost of traveling via an edge.
With the appropriate data, one can build routing solutions for hiking paths, calculate routes
that avoid built-up areas, or take into account some road works that add penalty costs to
some edges. It is also possible to calculate drive time zones, and from there, one could go on
to defining the best locations of service centers.

As we saw, using pgRouting is rather straightforward and its usage is usually down to
select * from <routing_algorythm> (<SQL for edges>, start, end,

<options>). This makes it very easy to start with and then, as one becomes more familiar
with the available functionality, to tweak the function parameters in order to improve the
achieved results.

Exposing the functionality of pgRouting via web services is also quite simple, and from
there, we're just a step away from consuming such services by external clients.

To summarize this into two words: pgRouting rocks (as well as PostGIS of course)!

As a final note it is worth remembering that, for larger graphs, it is good practice to work on
a subset of the data for better performance - one could pre-filter the data with a bounding
box to limit the number of edges to work with.

Index

A
A-Star (A*)
 about 282
 reference 284
Add PostGIS Table(s) tool 138
address data
 geocoding 173, 174, 175, 177, 179
administrative boundaries data
 URL 157
all pairs shortest path algorithms 277
analytic function
 using 117
API key
 reference 179
AsTopoJSON function
 URL 223

B
BBBike
 about 82
 URL 82
bounding boxes
 about 67
 accessing 68
 creating 69
 using, in spatial queries 69

C
centroids
 computing 98
common table expression (CTE) 91
concave hull
 creating 96
containing 103
convex hull
 creating 96

COPY, psql
 used, for data exporting 124
CORS (Cross Origin Resource Sharing)
 about 214
 enabling, in Jetty 214
 reference 215
crossing 101
CRUD application
 implementing, for vector editing demonstration via

web interfaces 227
 WebGIS CRUD client, setting up 233
 WebGIS CRUD server, configuring in Node.js

227

Cygwin
 reference 35

D
data exporting
 COPY in psql, using 124
 in PgAdmin 126
 in psql, interactively 124
 in psql, non-interactively 125
 with GIS clients 137
 with Manifold 142
 with PostgreSQL backup functionality 148
 with QGIS 138, 139, 140
data importing
 interactively 9
 non-interactively 12
 with pgAdmin 13
 with pgrestore 45
 with psql 8
DIBAVOD
 URL 240
driving distance 288

[303]

E
ESRI shapefile (SHP) 17
EU-DEM dataset
 URL 108
external data sources
 connecting, with Foreign Data Wrappers (FDW)

38

ExtJS
 Hello World application, launching with 187
 URL 189
Extract-Transform-Load (ETL) 150

F
flat data
 importing 8
 spatial information, extracting 16
Foreign Data Wrappers (FDW)
 about 38
 connecting, to SQL Server Spatial 38
 connecting, to WFS service 39
 external data sources, connecting 38

G
GDAL
 rasters, outputting 143, 145
geodesic function 62
GeoExt
 about 187
 URL 187
Geofabrik
 about 82
 URL 82
GeoJSON
 consuming 218
 consuming, in ol3 218
 outputting 218
 outputting, in Leaflet 220
geometries
 buffering 92
 centroids, computing 98
 composing 49
 concave hull, creating 96
 convex hull, creating 96
 coordinates, extracting from points 50

 decomposing 49
 distance, measuring between 63
 features, offsetting 94
 intersecting 76
 line length, measuring 65
 LineString, splitting with another LineString 88
 merging 82
 Multi-geometries, composing 50
 Multi-geometries, decomposing 50
 MultiLineStrings, merging 84
 offsetting 92
 points, creating 49
 points-on-line, computing 98
 points-on-surface, computing 98
 polygon, splitting by LineString 86
 polygons, merging 83
 reprojecting 99
 section of LineString, extracting 90
 simplification 69
 slicing 86
geometry dump 52
geometry validation
 about 71
 constraint 76
 geometry errors, repairing 75
 simplicity 72
 simplicity, testing 73
 validity 72
 validity, checking 74
 validity, testing 73
GeoServer web services
 configuring 189, 191
 raster data, outputting as WMS services 195
 test data, importing 191
 vector data, outputting as WFS services 200
 vector data, outputting as WMS services 192
GeoServer
 reference 195
 URL 190
GIS clients
 data, exporting 137
 data, importing 30
 shapefile, exporting to PostGIS with DbManager

31

 shapefile, exporting to PostGIS with QGIS 30, 31

[304]

 shapefile, exporting to PostGIS with SPIT 30
 spatial data, exporting to PostGIS from Manifold

GIS 32
GIS Support
 URL 157
GML 268
GML output 268
Google Account
 URL, for creating 174
Google Maps' node module
 URL 174

H
Hello World application
 launching, with ExtJS 187
hexadecimal WKB (HEXWKB) 108
HTTP server
 creating 153

I
Image Mosaic JDBC plugin
 URL 195
ISO SQL/MM 238

J
Jetty
 CORS, enabling 214
 reference 215
JSON data
 consuming 162, 164, 166, 168, 170, 172
 processing 157
 retrieving 157
 shapefiles, importing 157, 159, 161, 162

K
K-Dijkstra 284
K-Shortest path 284

L
Layer creation screen 193
Leaflet
 GeoJSON, consuming 220
 TopoJSON, consuming 225
 URL 209

 WMS, consuming 212
LineStrings
 about 53
 composing 53
 composition 53
 decomposing 53
 decomposition 55
 polygon, splitting 87
 section, extracting 90
 splitting, with another LineString 88
LINZ services
 URL, for registering 179
long term support (LTS) 151

M
Manifold
 data, exporting 142
 reference 35
MapServer
 URL 190
Mapzen
 about 82
 URL 82, 275
metadata tables
 Layer 241
 Topology 241
metadata
 obtaining, for raster 122
Minimum Bounding Rectangle (MBR) 240
Multi-geometries
 composing 50
 decomposing 50, 51
MultiLineStrings
 merging 84

N
Natural Earth national borders data
 URL 240
nearest feature
 querying 78
Node.js PgSQL client
 used, for communicating with database 154,

155, 157
Node.js
 hello world, creating in command line 152

[305]

 HTTP server, creating 153
 setting up 151
 URL 151
npm
 about 154
 URL 154

O
ogr2ogr GUI
 URL 28
ogr2ogr
 about 21
 GML, importing 23
 GUI 28, 136
 KML, exporting 132
 KML, importing 26
 MapInfo TAB, exporting 135
 MIF, exporting 135
 MIF, importing 24
 parameters 22
 SHP, exporting 134
 SQL Server, exporting 136
 TAB, importing 24
 URL 132
 used, for importing vector data 21
 vector data, exporting 131
ogr_fdw
 URL 38, 39
ogrinfo 22, 25
ol3
 GeoJSON, consuming 218
 TopoJSON, consuming 224
 WFS, consuming 215
 WMS, consuming 209
omnivore
 about 226
 URL 226
one-way edges
 handling 295
OpenLayers
 URL 209
OpenStreetMap data
 importing 35, 81
 importing, with osm2pgrouting 275
 obtaining 81

OpenWeatherMap
 about 157
 URL 163
opisometer (curvimeter) 62
osm2pgrouting
 URL, for downloading 275
osm2pgsql
 about 35
 URL 35
osm_pbf_fdw
 URL 38
overlapping 102

P
PgAdmin
 data, exporting 126
 used, for importing data 13
pgDijkstra 279
pgr_dijkstra function, modes
 many-to-many 279
 many-to-one 279
 one-to-many 279
 one-to-one 279
PgRaster
 URL 200
 using, with WMS GetMap handler 201
pgrestore
 data, importing 45
pgRouting algorithms
 about 276
 all pairs shortest path algorithms 277
 driving distance 288
 shortest path algorithms 278
 traveling sales person algorithm 292
pgRouting extension
 installing 272
 URL 272
pgRouting functionality
 consuming, in web app 296
pgsql options
 URL 22
pgsql2shp
 about 127
 GUI 129, 131
 used, for exporting vector data 127

[306]

 using 127
planimetric functions 62
points-on-line
 computing 98
points-on-surface
 computing 98
polygon
 area, measuring 66
 composing 56
 composition 57
 decomposing 56
 decomposition 59
 merging 83
 perimeter, measuring 65
 splitting, by LineString 86
PostgreSQL backup functionality
 data, exporting 148
PostgreSQL
 reference 38
psql
 COPY, used for data exporting 124
 data, exporting 124
 data, exporting non-interactively 125
 raster, outputting 145, 147
 used, for importing data 8

Q
QGIS
 data, exporting 138, 139, 140

R
radius queries 105
raster2pgsql
 multiple rasters, importing 44
 single raster, importing 42
 used, for loading rasters 40
raster
 converting, to vector 118
 data, preparing 108
 dataset, analyzing 110
 dataset, processing 110
 loading, with raster2pgsql 40
 metadata, obtaining 122
 outputting, with GDAL 143, 145
 outputting, with psql 145, 147

 spatial relationship, analyzing 119
 vector, converting 118
reprojecting 99
RIA (Rich Interface Application) 187
routing data
 importing 272
 OSM data,, importing with osm2pgrouting 275
 shapefiles, importing 272

S
Sencha CMD
 URL 187
serialized format 108
shapefile
 about 127
 importing 272
 reference 128
 URL 272
shortest path algorithms
 A-Star (A*) 282
 about 278
 K-Dijkstra 284
 K-Shortest path 284
 shortest path Dijkstra 278
 turn restrictions shortest path (TRSP) 286
shortest path Dijkstra
 about 278
 reference 282
shp2pgsql
 GUI version 20
 in cmd 18
 used, for importing shape files 17
Simple Feature data
 importing, into topology 243
 TopoGeometry column, creating 244
 TopoGeometry column, populating from existing

geometry 245
 topology layer, creating 244
 validity, checking of input geometries 243
spatial measurement
 about 62
 area, measuring of geometries 64
 distance, measuring between geometries 63
 geodesic function 62
 length, measuring of geometries 64

 perimeter, measuring of geometries 64
 planimetric function 62
spatial relationships
 about 101
 containing 103
 crossing 101
 overlapping 102
 radius queries 105
 touching 101
 with raster 119
SPIT 30
statistical function
 using 117

T
test data
 database, setting up 7
 obtaining 7
 references 7, 191
time attribute 54
TopoJSON output 269
TopoJSON
 about 268
 consuming 221
 consuming, in Leaflet 225
 consuming, in ol3 224
 outputting 221
topological data model 238
topological elements
 edges, locating 250
 faces, locating 252
 nodes, locating 250
 querying, by point 249
topology data
 accessing 248
 topological elements, querying by point 249
topology output
 about 268
 GML output 268
 TopoJSON output 269
topology, editing
 about 252
 edge geometry, updating 265
 elements, adding 252
 features, merging 258, 262

 features, splitting 258
 TopoGeometries, creating 257
topology
 data sources, using 240
 empty topology, creating 241
 inspecting 246
 installation 240
 sample data, importing for simplification 266
 Simple Feature data, importing 243
 simplification feature 266
TopoViewer 245
touching 101
traveling sales person algorithm
 about 292
 one-way edges, handling 295
turn restrictions shortest path (TRSP) 286

V
vector data
 exporting, with ogr2ogr 131
 exporting, with pgsql2shp 127
 importing, with ogr2ogr 21
vector
 converting, to raster 118
 raster, converting 118

W
web app
 pgRouting functionality, consuming 296
WebGIS CRUD client
 analysis tools, for buffering 237
 drawing tools 234
 layer manager 234
 setting up, for CRUD application 233
Well Known Binary (WKB) 107
Well Known Text (WKT) 107, 125
WFS
 consuming, in ol3 215
 data, consuming 179, 180, 181, 184
WMS GetMap handler
 PgRaster, using 201
WMS
 consuming 209
 consuming, in Leaflet 212
 consuming, in ol3 209

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Importing Spatial Data
	Obtaining test data
	Setting up the database

	Importing flat data
	Importing data using psql
	Importing data interactively
	Importing data non-interactively

	Importing data using pgAdmin
	Extracting spatial information from flat data

	Importing shape files using shp2pgsql
	shp2pgsql in cmd
	The shp2pgsql GUI version

	Importing vector data using ogr2ogr
	Importing GML
	Importing MIF and TAB
	Importing KML
	ogr2ogr GUI (Windows only)

	Importing data using GIS clients
	Exporting a shapefile to PostGIS using QGIS and SPIT
	Exporting shapefile to PostGIS using QGIS and DbManager
	Exporting spatial data to PostGIS from Manifold GIS

	Importing OpenStreetMap data
	Connecting to external data sources with foreign data wrappers
	Connecting to SQL Server Spatial
	Connecting to WFS service

	Loading rasters using raster2pgsql
	Importing a single raster
	Importing multiple rasters

	Importing data with pgrestore
	Summary

	Chapter 2: Spatial Data Analysis
	Composing and decomposing geometries
	Creating points
	Extracting coordinates from points
	Composing and decomposing Multi-geometries
	Multi-geometry decomposition

	Composing and decomposing LineStrings
	LineString composition
	LineString decomposition

	Composing and decomposing polygons
	Polygon composition
	Polygon decomposition

	Spatial measurement
	General warning - mind the SRID!
	Measuring distances between two geometries
	Measuring the length, area, and perimeter of geometries
	Line length
	Polygon perimeter
	Polygon area

	Geometry bounding boxes
	Accessing bounding boxes
	Creating bounding boxes
	Using bounding boxes in spatial queries

	Geometry simplification
	Geometry validation
	Simplicity and validity
	Testing for simplicity and validity
	Checking for validity

	Repairing geometry errors
	Validity constraint

	Intersecting geometries
	Nearest feature queries
	Summary

	Chapter 3: Data Processing - Vector Ops
	Primer - obtaining and importing OpenStreetMap data
	Merging geometries
	Merging polygons
	Merging MultiLineStrings

	Slicing geometries
	Splitting a polygon by LineString
	Splitting a LineString with another LineString
	Extracting a section of LineString

	Buffering and offsetting geometries
	Offsetting features
	Creating convex and concave hulls
	Computing centroids, points-on-surface, and points-on-line

	Reprojecting geometries
	Spatial relationships
	Touching
	Crossing
	Overlapping
	Containing
	Radius queries

	Summary

	Chapter 4: Data Processing - Raster Ops
	Preparing data
	Processing and analysis
	Analytic and statistical functions
	Vector to raster conversion
	Raster to vector conversion
	Spatial relationship
	Metadata
	Summary

	Chapter 5: Exporting Spatial Data
	Exporting data using \COPY in psql
	Exporting data in psql interactively
	Exporting data in psql non-interactively
	Exporting data in PgAdmin

	Exporting vector data using pgsql2shp
	pgsql2sph command line
	pgsql2shp gui

	Exporting vector data using ogr2ogr
	Exporting KML revisited
	Exporting SHP
	Exporting MapInfo TAB and MIF
	Exporting to SQL Server
	ogr2ogr GUI

	Exporting data using GIS clients
	Exporting data using QGIS
	Exporting data using Manifold.

	Outputting rasters using GDAL
	Outputting raster using psql
	Exporting data using the PostgreSQL backup functionality
	Summary

	Chapter 6: ETL Using Node.js
	Setting up Node.js
	Making a simple Node.js hello world in the command line
	Making a simple HTTP server

	Handshaking with a database using Node.js PgSQL client
	Retrieving and processing JSON data
	Importing shapefiles revisited
	Consuming JSON data

	Geocoding address data
	Consuming WFS data
	Summary

	Chapter 7: PostGIS – Creating Simple WebGIS Applications
	ExtJS says Hello World
	Configuring GeoServer web services
	Importing test data
	Outputting vector data as WMS services in GeoServer
	Outputting raster data as WMS services in GeoServer

	Outputting vector data as WFS services

	Making use of PgRaster in a simple WMS GetMap handler
	Consuming WMS
	Consuming WMS in ol3
	Consuming WMS in Leaflet

	Enabling CORS in Jetty
	Consuming WFS in ol3
	Outputting and consuming GeoJSON
	Consuming GeoJSON in ol3
	Consuming GeoJSON in Leaflet

	Outputting and consuming TopoJSON
	Consuming TopoJSON in ol3
	Consuming TopoJSON in Leaflet

	Implementing a simple CRUD application that demonstrates vector editing via web interfaces
	WebGIS CRUD server in Node.js
	WebGIS CRUD client
	Layer manager
	Drawing tools
	Analysis tools - buffering

	Summary

	Chapter 8: PostGIS Topology
	The conceptual model
	The data
	Installation
	Creating an empty topology
	Importing Simple Feature data into topology
	Checking the validity of input geometries
	Creating a TopoGeometry column and a topology layer
	Populating a TopoGeometry column from an existing geometry

	Inspecting and validating a topology
	Topology validation

	Accessing the topology data
	Querying topological elements by a point
	Locating nodes
	Locating edges
	Locating faces

	Topology editing
	Adding new elements
	Creating TopoGeometries
	Splitting and merging features
	Splitting features
	Merging features

	Updating edge geometry

	Topology-aware simplification
	Importing sample data

	Topology output
	GML output
	TopoJSON output

	Summary

	Chapter 9: pgRouting
	Installing the pgRouting extension
	Importing routing data
	Importing shapefiles
	Importing OSM data using osm2pgrouting

	pgRouting algorithms
	All pairs shortest path
	Shortest path
	Shortest path Dijkstra
	A-Star (A*)
	K-Dijkstra
	K-Shortest path
	Turn restrictions shortest path (TRSP)

	Driving distance
	Traveling sales person
	Handling one-way edges

	Consuming pgRouting functionality in a web app
	Summary

	Index

